Cargando…

The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis

OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diag...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfob, André, Sidey-Gibbons, Chris, Barr, Richard G., Duda, Volker, Alwafai, Zaher, Balleyguier, Corinne, Clevert, Dirk-André, Fastner, Sarah, Gomez, Christina, Goncalo, Manuela, Gruber, Ines, Hahn, Markus, Hennigs, André, Kapetas, Panagiotis, Lu, Sheng-Chieh, Nees, Juliane, Ohlinger, Ralf, Riedel, Fabian, Rutten, Matthieu, Schaefgen, Benedikt, Schuessler, Maximilian, Stieber, Anne, Togawa, Riku, Tozaki, Mitsuhiro, Wojcinski, Sebastian, Xu, Cai, Rauch, Geraldine, Heil, Joerg, Golatta, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123064/
https://www.ncbi.nlm.nih.gov/pubmed/35175381
http://dx.doi.org/10.1007/s00330-021-08519-z
_version_ 1784711482367279104
author Pfob, André
Sidey-Gibbons, Chris
Barr, Richard G.
Duda, Volker
Alwafai, Zaher
Balleyguier, Corinne
Clevert, Dirk-André
Fastner, Sarah
Gomez, Christina
Goncalo, Manuela
Gruber, Ines
Hahn, Markus
Hennigs, André
Kapetas, Panagiotis
Lu, Sheng-Chieh
Nees, Juliane
Ohlinger, Ralf
Riedel, Fabian
Rutten, Matthieu
Schaefgen, Benedikt
Schuessler, Maximilian
Stieber, Anne
Togawa, Riku
Tozaki, Mitsuhiro
Wojcinski, Sebastian
Xu, Cai
Rauch, Geraldine
Heil, Joerg
Golatta, Michael
author_facet Pfob, André
Sidey-Gibbons, Chris
Barr, Richard G.
Duda, Volker
Alwafai, Zaher
Balleyguier, Corinne
Clevert, Dirk-André
Fastner, Sarah
Gomez, Christina
Goncalo, Manuela
Gruber, Ines
Hahn, Markus
Hennigs, André
Kapetas, Panagiotis
Lu, Sheng-Chieh
Nees, Juliane
Ohlinger, Ralf
Riedel, Fabian
Rutten, Matthieu
Schaefgen, Benedikt
Schuessler, Maximilian
Stieber, Anne
Togawa, Riku
Tozaki, Mitsuhiro
Wojcinski, Sebastian
Xu, Cai
Rauch, Geraldine
Heil, Joerg
Golatta, Michael
author_sort Pfob, André
collection PubMed
description OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diagnostic performance of routine breast cancer diagnosis to breast ultrasound interpretations by humans or AI-based algorithms. METHODS: Patients were recruited as part of a multicenter trial (NCT02638935). The trial enrolled 1288 women undergoing routine breast cancer diagnosis (multi-modal imaging, demographic, and clinical information). Three physicians specialized in ultrasound diagnosis performed a second read of all ultrasound images. We used data from 11 of 12 study sites to develop two machine learning (ML) algorithms using unimodal information (ultrasound features generated by the ultrasound experts) to classify breast masses which were validated on the remaining study site. The same ML algorithms were subsequently developed and validated on multi-modal information (clinical and demographic information plus ultrasound features). We assessed performance using area under the curve (AUC). RESULTS: Of 1288 breast masses, 368 (28.6%) were histopathologically malignant. In the external validation set (n = 373), the performance of the two unimodal ultrasound ML algorithms (AUC 0.83 and 0.82) was commensurate with performance of the human ultrasound experts (AUC 0.82 to 0.84; p for all comparisons > 0.05). The multi-modal ultrasound ML algorithms performed significantly better (AUC 0.90 and 0.89) but were statistically inferior to routine breast cancer diagnosis (AUC 0.95, p for all comparisons ≤ 0.05). CONCLUSIONS: The performance of humans and AI-based algorithms improves with multi-modal information. KEY POINTS: • The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08519-z.
format Online
Article
Text
id pubmed-9123064
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-91230642022-05-22 The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis Pfob, André Sidey-Gibbons, Chris Barr, Richard G. Duda, Volker Alwafai, Zaher Balleyguier, Corinne Clevert, Dirk-André Fastner, Sarah Gomez, Christina Goncalo, Manuela Gruber, Ines Hahn, Markus Hennigs, André Kapetas, Panagiotis Lu, Sheng-Chieh Nees, Juliane Ohlinger, Ralf Riedel, Fabian Rutten, Matthieu Schaefgen, Benedikt Schuessler, Maximilian Stieber, Anne Togawa, Riku Tozaki, Mitsuhiro Wojcinski, Sebastian Xu, Cai Rauch, Geraldine Heil, Joerg Golatta, Michael Eur Radiol Breast OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diagnostic performance of routine breast cancer diagnosis to breast ultrasound interpretations by humans or AI-based algorithms. METHODS: Patients were recruited as part of a multicenter trial (NCT02638935). The trial enrolled 1288 women undergoing routine breast cancer diagnosis (multi-modal imaging, demographic, and clinical information). Three physicians specialized in ultrasound diagnosis performed a second read of all ultrasound images. We used data from 11 of 12 study sites to develop two machine learning (ML) algorithms using unimodal information (ultrasound features generated by the ultrasound experts) to classify breast masses which were validated on the remaining study site. The same ML algorithms were subsequently developed and validated on multi-modal information (clinical and demographic information plus ultrasound features). We assessed performance using area under the curve (AUC). RESULTS: Of 1288 breast masses, 368 (28.6%) were histopathologically malignant. In the external validation set (n = 373), the performance of the two unimodal ultrasound ML algorithms (AUC 0.83 and 0.82) was commensurate with performance of the human ultrasound experts (AUC 0.82 to 0.84; p for all comparisons > 0.05). The multi-modal ultrasound ML algorithms performed significantly better (AUC 0.90 and 0.89) but were statistically inferior to routine breast cancer diagnosis (AUC 0.95, p for all comparisons ≤ 0.05). CONCLUSIONS: The performance of humans and AI-based algorithms improves with multi-modal information. KEY POINTS: • The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08519-z. Springer Berlin Heidelberg 2022-02-17 2022 /pmc/articles/PMC9123064/ /pubmed/35175381 http://dx.doi.org/10.1007/s00330-021-08519-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Breast
Pfob, André
Sidey-Gibbons, Chris
Barr, Richard G.
Duda, Volker
Alwafai, Zaher
Balleyguier, Corinne
Clevert, Dirk-André
Fastner, Sarah
Gomez, Christina
Goncalo, Manuela
Gruber, Ines
Hahn, Markus
Hennigs, André
Kapetas, Panagiotis
Lu, Sheng-Chieh
Nees, Juliane
Ohlinger, Ralf
Riedel, Fabian
Rutten, Matthieu
Schaefgen, Benedikt
Schuessler, Maximilian
Stieber, Anne
Togawa, Riku
Tozaki, Mitsuhiro
Wojcinski, Sebastian
Xu, Cai
Rauch, Geraldine
Heil, Joerg
Golatta, Michael
The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title_full The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title_fullStr The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title_full_unstemmed The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title_short The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
title_sort importance of multi-modal imaging and clinical information for humans and ai-based algorithms to classify breast masses (inspired 003): an international, multicenter analysis
topic Breast
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123064/
https://www.ncbi.nlm.nih.gov/pubmed/35175381
http://dx.doi.org/10.1007/s00330-021-08519-z
work_keys_str_mv AT pfobandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT sideygibbonschris theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT barrrichardg theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT dudavolker theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT alwafaizaher theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT balleyguiercorinne theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT clevertdirkandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT fastnersarah theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT gomezchristina theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT goncalomanuela theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT gruberines theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT hahnmarkus theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT hennigsandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT kapetaspanagiotis theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT lushengchieh theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT neesjuliane theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT ohlingerralf theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT riedelfabian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT ruttenmatthieu theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT schaefgenbenedikt theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT schuesslermaximilian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT stieberanne theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT togawariku theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT tozakimitsuhiro theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT wojcinskisebastian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT xucai theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT rauchgeraldine theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT heiljoerg theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT golattamichael theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT pfobandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT sideygibbonschris importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT barrrichardg importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT dudavolker importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT alwafaizaher importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT balleyguiercorinne importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT clevertdirkandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT fastnersarah importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT gomezchristina importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT goncalomanuela importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT gruberines importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT hahnmarkus importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT hennigsandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT kapetaspanagiotis importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT lushengchieh importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT neesjuliane importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT ohlingerralf importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT riedelfabian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT ruttenmatthieu importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT schaefgenbenedikt importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT schuesslermaximilian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT stieberanne importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT togawariku importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT tozakimitsuhiro importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT wojcinskisebastian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT xucai importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT rauchgeraldine importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT heiljoerg importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis
AT golattamichael importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis