Cargando…
The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis
OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diag...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123064/ https://www.ncbi.nlm.nih.gov/pubmed/35175381 http://dx.doi.org/10.1007/s00330-021-08519-z |
_version_ | 1784711482367279104 |
---|---|
author | Pfob, André Sidey-Gibbons, Chris Barr, Richard G. Duda, Volker Alwafai, Zaher Balleyguier, Corinne Clevert, Dirk-André Fastner, Sarah Gomez, Christina Goncalo, Manuela Gruber, Ines Hahn, Markus Hennigs, André Kapetas, Panagiotis Lu, Sheng-Chieh Nees, Juliane Ohlinger, Ralf Riedel, Fabian Rutten, Matthieu Schaefgen, Benedikt Schuessler, Maximilian Stieber, Anne Togawa, Riku Tozaki, Mitsuhiro Wojcinski, Sebastian Xu, Cai Rauch, Geraldine Heil, Joerg Golatta, Michael |
author_facet | Pfob, André Sidey-Gibbons, Chris Barr, Richard G. Duda, Volker Alwafai, Zaher Balleyguier, Corinne Clevert, Dirk-André Fastner, Sarah Gomez, Christina Goncalo, Manuela Gruber, Ines Hahn, Markus Hennigs, André Kapetas, Panagiotis Lu, Sheng-Chieh Nees, Juliane Ohlinger, Ralf Riedel, Fabian Rutten, Matthieu Schaefgen, Benedikt Schuessler, Maximilian Stieber, Anne Togawa, Riku Tozaki, Mitsuhiro Wojcinski, Sebastian Xu, Cai Rauch, Geraldine Heil, Joerg Golatta, Michael |
author_sort | Pfob, André |
collection | PubMed |
description | OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diagnostic performance of routine breast cancer diagnosis to breast ultrasound interpretations by humans or AI-based algorithms. METHODS: Patients were recruited as part of a multicenter trial (NCT02638935). The trial enrolled 1288 women undergoing routine breast cancer diagnosis (multi-modal imaging, demographic, and clinical information). Three physicians specialized in ultrasound diagnosis performed a second read of all ultrasound images. We used data from 11 of 12 study sites to develop two machine learning (ML) algorithms using unimodal information (ultrasound features generated by the ultrasound experts) to classify breast masses which were validated on the remaining study site. The same ML algorithms were subsequently developed and validated on multi-modal information (clinical and demographic information plus ultrasound features). We assessed performance using area under the curve (AUC). RESULTS: Of 1288 breast masses, 368 (28.6%) were histopathologically malignant. In the external validation set (n = 373), the performance of the two unimodal ultrasound ML algorithms (AUC 0.83 and 0.82) was commensurate with performance of the human ultrasound experts (AUC 0.82 to 0.84; p for all comparisons > 0.05). The multi-modal ultrasound ML algorithms performed significantly better (AUC 0.90 and 0.89) but were statistically inferior to routine breast cancer diagnosis (AUC 0.95, p for all comparisons ≤ 0.05). CONCLUSIONS: The performance of humans and AI-based algorithms improves with multi-modal information. KEY POINTS: • The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08519-z. |
format | Online Article Text |
id | pubmed-9123064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-91230642022-05-22 The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis Pfob, André Sidey-Gibbons, Chris Barr, Richard G. Duda, Volker Alwafai, Zaher Balleyguier, Corinne Clevert, Dirk-André Fastner, Sarah Gomez, Christina Goncalo, Manuela Gruber, Ines Hahn, Markus Hennigs, André Kapetas, Panagiotis Lu, Sheng-Chieh Nees, Juliane Ohlinger, Ralf Riedel, Fabian Rutten, Matthieu Schaefgen, Benedikt Schuessler, Maximilian Stieber, Anne Togawa, Riku Tozaki, Mitsuhiro Wojcinski, Sebastian Xu, Cai Rauch, Geraldine Heil, Joerg Golatta, Michael Eur Radiol Breast OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diagnostic performance of routine breast cancer diagnosis to breast ultrasound interpretations by humans or AI-based algorithms. METHODS: Patients were recruited as part of a multicenter trial (NCT02638935). The trial enrolled 1288 women undergoing routine breast cancer diagnosis (multi-modal imaging, demographic, and clinical information). Three physicians specialized in ultrasound diagnosis performed a second read of all ultrasound images. We used data from 11 of 12 study sites to develop two machine learning (ML) algorithms using unimodal information (ultrasound features generated by the ultrasound experts) to classify breast masses which were validated on the remaining study site. The same ML algorithms were subsequently developed and validated on multi-modal information (clinical and demographic information plus ultrasound features). We assessed performance using area under the curve (AUC). RESULTS: Of 1288 breast masses, 368 (28.6%) were histopathologically malignant. In the external validation set (n = 373), the performance of the two unimodal ultrasound ML algorithms (AUC 0.83 and 0.82) was commensurate with performance of the human ultrasound experts (AUC 0.82 to 0.84; p for all comparisons > 0.05). The multi-modal ultrasound ML algorithms performed significantly better (AUC 0.90 and 0.89) but were statistically inferior to routine breast cancer diagnosis (AUC 0.95, p for all comparisons ≤ 0.05). CONCLUSIONS: The performance of humans and AI-based algorithms improves with multi-modal information. KEY POINTS: • The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08519-z. Springer Berlin Heidelberg 2022-02-17 2022 /pmc/articles/PMC9123064/ /pubmed/35175381 http://dx.doi.org/10.1007/s00330-021-08519-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Breast Pfob, André Sidey-Gibbons, Chris Barr, Richard G. Duda, Volker Alwafai, Zaher Balleyguier, Corinne Clevert, Dirk-André Fastner, Sarah Gomez, Christina Goncalo, Manuela Gruber, Ines Hahn, Markus Hennigs, André Kapetas, Panagiotis Lu, Sheng-Chieh Nees, Juliane Ohlinger, Ralf Riedel, Fabian Rutten, Matthieu Schaefgen, Benedikt Schuessler, Maximilian Stieber, Anne Togawa, Riku Tozaki, Mitsuhiro Wojcinski, Sebastian Xu, Cai Rauch, Geraldine Heil, Joerg Golatta, Michael The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title | The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title_full | The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title_fullStr | The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title_full_unstemmed | The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title_short | The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis |
title_sort | importance of multi-modal imaging and clinical information for humans and ai-based algorithms to classify breast masses (inspired 003): an international, multicenter analysis |
topic | Breast |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123064/ https://www.ncbi.nlm.nih.gov/pubmed/35175381 http://dx.doi.org/10.1007/s00330-021-08519-z |
work_keys_str_mv | AT pfobandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT sideygibbonschris theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT barrrichardg theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT dudavolker theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT alwafaizaher theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT balleyguiercorinne theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT clevertdirkandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT fastnersarah theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT gomezchristina theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT goncalomanuela theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT gruberines theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT hahnmarkus theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT hennigsandre theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT kapetaspanagiotis theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT lushengchieh theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT neesjuliane theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT ohlingerralf theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT riedelfabian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT ruttenmatthieu theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT schaefgenbenedikt theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT schuesslermaximilian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT stieberanne theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT togawariku theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT tozakimitsuhiro theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT wojcinskisebastian theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT xucai theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT rauchgeraldine theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT heiljoerg theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT golattamichael theimportanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT pfobandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT sideygibbonschris importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT barrrichardg importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT dudavolker importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT alwafaizaher importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT balleyguiercorinne importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT clevertdirkandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT fastnersarah importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT gomezchristina importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT goncalomanuela importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT gruberines importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT hahnmarkus importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT hennigsandre importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT kapetaspanagiotis importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT lushengchieh importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT neesjuliane importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT ohlingerralf importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT riedelfabian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT ruttenmatthieu importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT schaefgenbenedikt importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT schuesslermaximilian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT stieberanne importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT togawariku importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT tozakimitsuhiro importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT wojcinskisebastian importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT xucai importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT rauchgeraldine importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT heiljoerg importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis AT golattamichael importanceofmultimodalimagingandclinicalinformationforhumansandaibasedalgorithmstoclassifybreastmassesinspired003aninternationalmulticenteranalysis |