Cargando…
Modelling armed conflict risk under climate change with machine learning and time-series data
Understanding the risk of armed conflict is essential for promoting peace. Although the relationship between climate variability and armed conflict has been studied by the research community for decades with quantitative and qualitative methods at different spatial and temporal scales, causal linkag...
Autores principales: | Ge, Quansheng, Hao, Mengmeng, Ding, Fangyu, Jiang, Dong, Scheffran, Jürgen, Helman, David, Ide, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123163/ https://www.ncbi.nlm.nih.gov/pubmed/35595793 http://dx.doi.org/10.1038/s41467-022-30356-x |
Ejemplares similares
-
Exploring the direct and indirect impacts of climate variability on armed conflict in South Asia
por: Xie, Xiaolan, et al.
Publicado: (2022) -
Exploring the worldwide impact of COVID-19 on conflict risk under climate change
por: Xie, Xiaolan, et al.
Publicado: (2023) -
An integrated deep-learning and multi-level framework for understanding the behavior of terrorist groups
por: Jiang, Dong, et al.
Publicado: (2023) -
Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach
por: Ding, Fangyu, et al.
Publicado: (2017) -
Introduction: Climate Change, Human Security, and Violent Conflict in the Anthropocene
por: Brauch, Hans Günter, et al.
Publicado: (2012)