Cargando…

A novel early diagnostic framework for chronic diseases with class imbalance

Chronic diseases are one of the most severe health issues in the world, due to their terrible clinical presentations such as long onset cycle, insidious symptoms, and various complications. Recently, machine learning has become a promising technique to assist the early diagnosis of chronic diseases....

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Xiaohan, Chen, Shuyu, Sun, Chuan, Yuwen, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123399/
https://www.ncbi.nlm.nih.gov/pubmed/35597855
http://dx.doi.org/10.1038/s41598-022-12574-x
Descripción
Sumario:Chronic diseases are one of the most severe health issues in the world, due to their terrible clinical presentations such as long onset cycle, insidious symptoms, and various complications. Recently, machine learning has become a promising technique to assist the early diagnosis of chronic diseases. However, existing works ignore the problems of feature hiding and imbalanced class distribution in chronic disease datasets. In this paper, we present a universal and efficient diagnostic framework to alleviate the above two problems for diagnosing chronic diseases timely and accurately. Specifically, we first propose a network-limited polynomial neural network (NLPNN) algorithm to efficiently capture high-level features hidden in chronic disease datasets, which is data augmentation in terms of its feature space and can also avoid over-fitting. Then, to alleviate the class imbalance problem, we further propose an attention-empowered NLPNN algorithm to improve the diagnostic accuracy for sick cases, which is also data augmentation in terms of its sample space. We evaluate the proposed framework on nine public and two real chronic disease datasets (partly with class imbalance). Extensive experiment results demonstrate that the proposed diagnostic algorithms outperform state-of-the-art machine learning algorithms, and can achieve superior performances in terms of accuracy, recall, F1, and G_mean. The proposed framework can help to diagnose chronic diseases timely and accurately at an early stage.