Cargando…

Physiologic-range three/two-way valve for respiratory circuits

A 3D-printed three/two-way valve compatible with respiratory circuits is presented. It is actuated by a servo motor (HXT12K), which is able to be controlled by any PWM-capable micro controller. The valve sufficiently isolates respiratory circuits to deliver fully customisable mechanical ventilation...

Descripción completa

Detalles Bibliográficos
Autores principales: Holder-Pearson, Lui, Lerios, Theodore, Chase, J. Geoffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123468/
https://www.ncbi.nlm.nih.gov/pubmed/35607685
http://dx.doi.org/10.1016/j.ohx.2021.e00234
Descripción
Sumario:A 3D-printed three/two-way valve compatible with respiratory circuits is presented. It is actuated by a servo motor (HXT12K), which is able to be controlled by any PWM-capable micro controller. The valve sufficiently isolates respiratory circuits to deliver fully customisable mechanical ventilation breathing cycles, with differences in driving and end-expiratory pressures of up to [Formula: see text] successfully demonstrated. It is suitable for multiplexing ventilators for in-series breathing, or providing separate ventilation to each individual lung in a single patient. Each switching valve costs approximately $16USD, $10 of which is the servo motor which can be reused, allowing subsequent devices for only $6USD of 3D printing and common engineering components. The valve has proven reliable for at least 50,000 state changes over at least one month.