Cargando…

Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients

PURPOSE: The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. METHODS: Twenty-five patients diagnosed with KC and 2...

Descripción completa

Detalles Bibliográficos
Autores principales: López-López, Maite, Regueiro, Uxía, Bravo, Susana Belén, Chantada-Vázquez, María del Pilar, Pena, Carmen, Díez-Feijoo, Elío, Hervella, Pablo, Lema, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123485/
https://www.ncbi.nlm.nih.gov/pubmed/35551575
http://dx.doi.org/10.1167/iovs.63.5.12
_version_ 1784711562336927744
author López-López, Maite
Regueiro, Uxía
Bravo, Susana Belén
Chantada-Vázquez, María del Pilar
Pena, Carmen
Díez-Feijoo, Elío
Hervella, Pablo
Lema, Isabel
author_facet López-López, Maite
Regueiro, Uxía
Bravo, Susana Belén
Chantada-Vázquez, María del Pilar
Pena, Carmen
Díez-Feijoo, Elío
Hervella, Pablo
Lema, Isabel
author_sort López-López, Maite
collection PubMed
description PURPOSE: The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. METHODS: Twenty-five patients diagnosed with KC and 25 control subjects were studied in a prospective, cross-sectional study. KC screening examinations, including clinical and tomographic examinations, were performed on all participants. Tear samples were collected using Schirmer strips and analyzed by liquid chromatography-tandem mass spectrometry in a data-dependent workflow. A spectral count was used as a semiquantification tool. The tear proteomes of both groups were identified and profiled, and the functional interactions and biological characterization of differential proteins were analyzed using in silico tools. RESULTS: We identified a total of 232 proteins, of whom 133 were expressed in both groups’ samples; 41 were observed only in control samples and 58 were identified just in tears of patients with KC. A semiquantitative analysis showed the dysregulation of 17 proteins in the KC samples. An in silico analysis linked proteins only expressed in KC samples to oxidative stress, skin development, and apoptosis. The dysregulation of proteins involved in iron transport, inflammation, oxidative stress, and protease inhibition was observed in the semiquantitative results. CONCLUSIONS: A shotgun analysis showed that the tear proteome of patients with KC differed from controls by more than one-third of the total proteins identified, highlighting the relationship of the proteins only expressed in KC tears with processes of cell death, oxidative damage, and inflammation. The underexpression of proteins involved in iron pathways might support the iron imbalance as a contributing factor to cellular damage and death in KC disease.
format Online
Article
Text
id pubmed-9123485
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-91234852022-05-22 Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients López-López, Maite Regueiro, Uxía Bravo, Susana Belén Chantada-Vázquez, María del Pilar Pena, Carmen Díez-Feijoo, Elío Hervella, Pablo Lema, Isabel Invest Ophthalmol Vis Sci Cornea PURPOSE: The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. METHODS: Twenty-five patients diagnosed with KC and 25 control subjects were studied in a prospective, cross-sectional study. KC screening examinations, including clinical and tomographic examinations, were performed on all participants. Tear samples were collected using Schirmer strips and analyzed by liquid chromatography-tandem mass spectrometry in a data-dependent workflow. A spectral count was used as a semiquantification tool. The tear proteomes of both groups were identified and profiled, and the functional interactions and biological characterization of differential proteins were analyzed using in silico tools. RESULTS: We identified a total of 232 proteins, of whom 133 were expressed in both groups’ samples; 41 were observed only in control samples and 58 were identified just in tears of patients with KC. A semiquantitative analysis showed the dysregulation of 17 proteins in the KC samples. An in silico analysis linked proteins only expressed in KC samples to oxidative stress, skin development, and apoptosis. The dysregulation of proteins involved in iron transport, inflammation, oxidative stress, and protease inhibition was observed in the semiquantitative results. CONCLUSIONS: A shotgun analysis showed that the tear proteome of patients with KC differed from controls by more than one-third of the total proteins identified, highlighting the relationship of the proteins only expressed in KC tears with processes of cell death, oxidative damage, and inflammation. The underexpression of proteins involved in iron pathways might support the iron imbalance as a contributing factor to cellular damage and death in KC disease. The Association for Research in Vision and Ophthalmology 2022-05-12 /pmc/articles/PMC9123485/ /pubmed/35551575 http://dx.doi.org/10.1167/iovs.63.5.12 Text en Copyright 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Cornea
López-López, Maite
Regueiro, Uxía
Bravo, Susana Belén
Chantada-Vázquez, María del Pilar
Pena, Carmen
Díez-Feijoo, Elío
Hervella, Pablo
Lema, Isabel
Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title_full Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title_fullStr Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title_full_unstemmed Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title_short Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients
title_sort shotgun proteomics for the identification and profiling of the tear proteome of keratoconus patients
topic Cornea
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123485/
https://www.ncbi.nlm.nih.gov/pubmed/35551575
http://dx.doi.org/10.1167/iovs.63.5.12
work_keys_str_mv AT lopezlopezmaite shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT regueirouxia shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT bravosusanabelen shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT chantadavazquezmariadelpilar shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT penacarmen shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT diezfeijooelio shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT hervellapablo shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients
AT lemaisabel shotgunproteomicsfortheidentificationandprofilingofthetearproteomeofkeratoconuspatients