Cargando…
Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms
The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However,...
Autores principales: | Giovanola, Benedetta, Tiribelli, Simona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123626/ https://www.ncbi.nlm.nih.gov/pubmed/35615443 http://dx.doi.org/10.1007/s00146-022-01455-6 |
Ejemplares similares
-
AI Fairness
por: Mahoney, Trisha
Publicado: (2020) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Machine learning modeling practices to support the principles of AI and ethics in nutrition research
por: Thomas, Diana M., et al.
Publicado: (2022) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
All that glitters is not gold: trustworthy and ethical AI principles
por: Rees, Connor, et al.
Publicado: (2022)