Cargando…

Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum

BACKGROUND: Lycopene epsilon-cyclase (ε-LCY) is a key enzyme in the carotenoid biosynthetic pathway (CBP) of higher plants. In previous work, we cloned two Ntε-LCY genes from allotetraploid tobacco (Nicotiana tabacum), Ntε-LCY2 and Ntε-LCY1, and demonstrated the overall effect of Ntε-LCY genes on ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Weina, Wei, Fang, Gao, Shuwen, Dong, Chen, Hao, Jianfeng, Jin, Lifeng, Li, Feng, Wei, Pan, Guo, Jinggong, Wang, Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123772/
https://www.ncbi.nlm.nih.gov/pubmed/35597910
http://dx.doi.org/10.1186/s12870-022-03634-5
Descripción
Sumario:BACKGROUND: Lycopene epsilon-cyclase (ε-LCY) is a key enzyme in the carotenoid biosynthetic pathway (CBP) of higher plants. In previous work, we cloned two Ntε-LCY genes from allotetraploid tobacco (Nicotiana tabacum), Ntε-LCY2 and Ntε-LCY1, and demonstrated the overall effect of Ntε-LCY genes on carotenoid biosynthesis and stress resistance. However, their genetic and functional characteristics require further research in polyploid plants. RESULTS: Here, we used CRISPR/Cas9 to obtain Ntε-LCY2 and Ntε-LCY1 mutants in allotetraploid N.tabacum K326. Ntε-LCY2 and Ntε-LCY1 had similar promoter cis-acting elements, including light-responsive elements. The Ntε-LCY genes were expressed in roots, stems, leaves, flowers, and young fruit, and their highest expression levels were found in leaves. Ntε-LCY2 and Ntε-LCY1 genes responded differently to normal light and high light stress. Both the Ntε-LCY2 and the Ntε-LCY1 mutants had a more rapid leaf growth rate, especially ntε-lcy2-1. The expression levels of CBP genes were increased in the ntε-lcy mutants, and their total carotenoid content was higher. Under both normal light and high light stress, the ntε-lcy mutants had higher photosynthetic capacities and heat dissipation levels than the wild type, and this was especially true of ntε-lcy2-1. The reactive oxygen species content was lower in leaves of the ntε-lcy mutants. CONCLUSION: In summary, the expression patterns and biological functions of the Ntε-LCY genes Ntε-LCY1 and Ntε-LCY2 differed in several respects. The mutation of Ntε-LCY2 was associated with a greater increase in the content of chlorophyll and various carotenoid components, and it enhanced the stress resistance of tobacco plants under high light. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03634-5.