Cargando…
Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning
OBJECTIVE: To implement and evaluate machine learning (ML) algorithms for the prediction of COVID-19 diagnosis, severity, and fatality and to assess biomarkers potentially associated with these outcomes. MATERIAL AND METHODS: Serum (n = 96) and plasma (n = 96) samples from patients with COVID-19 (ac...
Autores principales: | de Fátima Cobre, Alexandre, Surek, Monica, Stremel, Dile Pontarolo, Fachi, Mariana Millan, Lobo Borba, Helena Hiemisch, Tonin, Fernanda Stumpf, Pontarolo, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123826/ https://www.ncbi.nlm.nih.gov/pubmed/35751188 http://dx.doi.org/10.1016/j.compbiomed.2022.105659 |
Ejemplares similares
-
Diagnosis and prediction of COVID-19 severity: can biochemical tests and machine learning be used as prognostic indicators?
por: Cobre, Alexandre de Fátima, et al.
Publicado: (2021) -
POSB422 Machine Learning-Based Virtual Screening, Molecular Docking and Drug-Likeness to Discover New Inhibitors of the Glycoprotein Spike (S1) of SARS-CoV-2
por: Cobre, AF, et al.
Publicado: (2022) -
Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19
por: Böger, Beatriz, et al.
Publicado: (2021) -
Influence of foods and nutrients on COVID-19 recovery: A multivariate analysis of data from 170 countries using a generalized linear model
por: Cobre, Alexandre F., et al.
Publicado: (2022) -
Quality of life of Brazilian chronic hepatitis C patients treated with interferon-free therapies
por: Siqueira, Fabiane Mateus, et al.
Publicado: (2018)