Cargando…
Disentangling Alzheimer’s disease neurodegeneration from typical brain ageing using machine learning
Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer’s disease are valuable for determining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of brain change related to the two processes,...
Autores principales: | Hwang, Gyujoon, Abdulkadir, Ahmed, Erus, Guray, Habes, Mohamad, Pomponio, Raymond, Shou, Haochang, Doshi, Jimit, Mamourian, Elizabeth, Rashid, Tanweer, Bilgel, Murat, Fan, Yong, Sotiras, Aristeidis, Srinivasan, Dhivya, Morris, John C., Albert, Marilyn S., Bryan, Nick R., Resnick, Susan M., Nasrallah, Ilya M., Davatzikos, Christos, Wolk, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123890/ https://www.ncbi.nlm.nih.gov/pubmed/35611306 http://dx.doi.org/10.1093/braincomms/fcac117 |
Ejemplares similares
-
A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
por: Yang, Zhijian, et al.
Publicado: (2021) -
White matter hyperintensities are more highly associated with preclinical Alzheimer's disease than imaging and cognitive markers of neurodegeneration
por: Kandel, Benjamin M., et al.
Publicado: (2016) -
Sex differences in the association between amyloid and longitudinal brain volume change in cognitively normal older adults
por: Armstrong, Nicole M., et al.
Publicado: (2019) -
Regional tract-specific white matter hyperintensities are associated with patterns of aging-related brain atrophy via vascular risk factors, but also independently
por: Habes, Mohamad, et al.
Publicado: (2018) -
Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias
por: Jirsaraie, Robert J., et al.
Publicado: (2022)