Cargando…
Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms
Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123926/ https://www.ncbi.nlm.nih.gov/pubmed/35647556 http://dx.doi.org/10.1007/s42979-022-01186-x |
_version_ | 1784711653217009664 |
---|---|
author | Berns, Fabian Hüwel, Jan Beecks, Christian |
author_facet | Berns, Fabian Hüwel, Jan Beecks, Christian |
author_sort | Berns, Fabian |
collection | PubMed |
description | Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data’s inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes. |
format | Online Article Text |
id | pubmed-9123926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Nature Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-91239262022-05-23 Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms Berns, Fabian Hüwel, Jan Beecks, Christian SN Comput Sci Review Article Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While these default instantiations yield acceptable analytical quality in terms of model accuracy, GPM inference algorithms automatically search for an application-specific model fitting a particular dataset. State-of-the-art methods for automated inference of GPMs are searching the space of possible models in a rather intricate way and thus result in super-quadratic computation time complexity for model selection and evaluation. Since these properties only enable processing small datasets with low statistical versatility, various methods and algorithms using global as well as local approximations have been proposed for efficient inference of large-scale GPMs. While the latter approximation relies on representing data via local sub-models, global approaches capture data’s inherent characteristics by means of an educated sample. In this paper, we investigate the current state-of-the-art in automated model inference for Gaussian processes and outline strengths and shortcomings of the respective approaches. A performance analysis backs our theoretical findings and provides further empirical evidence. It indicates that approximated inference algorithms, especially locally approximating ones, deliver superior runtime performance, while maintaining the quality level of those using non-approximative Gaussian processes. Springer Nature Singapore 2022-05-21 2022 /pmc/articles/PMC9123926/ /pubmed/35647556 http://dx.doi.org/10.1007/s42979-022-01186-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Article Berns, Fabian Hüwel, Jan Beecks, Christian Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title_full | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title_fullStr | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title_full_unstemmed | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title_short | Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms |
title_sort | automated model inference for gaussian processes: an overview of state-of-the-art methods and algorithms |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123926/ https://www.ncbi.nlm.nih.gov/pubmed/35647556 http://dx.doi.org/10.1007/s42979-022-01186-x |
work_keys_str_mv | AT bernsfabian automatedmodelinferenceforgaussianprocessesanoverviewofstateoftheartmethodsandalgorithms AT huweljan automatedmodelinferenceforgaussianprocessesanoverviewofstateoftheartmethodsandalgorithms AT beeckschristian automatedmodelinferenceforgaussianprocessesanoverviewofstateoftheartmethodsandalgorithms |