Cargando…
Automated Model Inference for Gaussian Processes: An Overview of State-of-the-Art Methods and Algorithms
Gaussian process models (GPMs) are widely regarded as a prominent tool for learning statistical data models that enable interpolation, regression, and classification. These models are typically instantiated by a Gaussian Process with a zero-mean function and a radial basis covariance function. While...
Autores principales: | Berns, Fabian, Hüwel, Jan, Beecks, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123926/ https://www.ncbi.nlm.nih.gov/pubmed/35647556 http://dx.doi.org/10.1007/s42979-022-01186-x |
Ejemplares similares
-
Efficient Neutrino Oscillation Parameter Inference with Gaussian Processes
por: Nayak, Bannanje Nitish
Publicado: (2019) -
FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks
por: Wang, Ting, et al.
Publicado: (2016) -
Efficient inference of synaptic plasticity rule with Gaussian process regression
por: Chen, Shirui, et al.
Publicado: (2023) -
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
por: Li, Didong, et al.
Publicado: (2023) -
Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
por: Liang, Rubing, et al.
Publicado: (2022)