Cargando…
PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier
Objectives: Regional bladder wall thickening on noninvasive magnetic resonance (MR) images is an important sign of developing urinary bladder cancer (BCa), and precise segmentation of the tumor mass is an essential step toward noninvasive identification of the pathological stage and grade, which is...
Autores principales: | Li, Ziqi, Feng, Na, Pu, Huangsheng, Dong, Qi, Liu, Yan, Liu, Yang, Xu, Xiaopan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123929/ https://www.ncbi.nlm.nih.gov/pubmed/35296195 http://dx.doi.org/10.1177/15330338221086395 |
Ejemplares similares
-
Land Cover Classification with GF-3 Polarimetric Synthetic Aperture Radar Data by Random Forest Classifier and Fast Super-Pixel Segmentation
por: Fang, Yuyuan, et al.
Publicado: (2018) -
Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion
por: Liu, Yu, et al.
Publicado: (2022) -
Random Bits Forest: a Strong Classifier/Regressor for Big Data
por: Wang, Yi, et al.
Publicado: (2016) -
Label fusion method combining pixel greyscale probability for brain MR segmentation
por: Wang, Monan, et al.
Publicado: (2019) -
A pixel-level coarse-to-fine image segmentation labelling algorithm
por: Lee, Jonghyeok, et al.
Publicado: (2022)