Cargando…

Research on Online Rapid Sorting Method of Waste Textiles Based on Near-Infrared Spectroscopy and Generative Adversity Network

In this paper, aiming at the application of online rapid sorting of waste textiles, a large number of effective high-content blending data are generated by using generative adversity network to deeply mine the combination relationship of blending spectra, and A BEGAN-RBF-SVM classification model is...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Jinquan, Yang, Huihua, Zhao, Guoliang, Zhou, Ruizhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124101/
https://www.ncbi.nlm.nih.gov/pubmed/35607473
http://dx.doi.org/10.1155/2022/6215101
Descripción
Sumario:In this paper, aiming at the application of online rapid sorting of waste textiles, a large number of effective high-content blending data are generated by using generative adversity network to deeply mine the combination relationship of blending spectra, and A BEGAN-RBF-SVM classification model is constructed by compensating the imbalance of negative samples in the data set. Various experiments show that the model can effectively extract the spectrum of pure textile samples. The classification model has high robustness and high speed, reaches the performance of similar products in the world, and has a broad application market.