Cargando…
5G Converged Network Resource Allocation Strategy Based on Reinforcement Learning in Edge Cloud Computing Environment
Aiming at the problem that computing power and resources of Mobile Edge Computing (MEC) servers are difficult to process long-period intensive task data, this study proposes a 5G converged network resource allocation strategy based on reinforcement learning in edge cloud computing environment. n ord...
Autor principal: | Li, Xuezhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124103/ https://www.ncbi.nlm.nih.gov/pubmed/35607465 http://dx.doi.org/10.1155/2022/6174708 |
Ejemplares similares
-
Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
por: Xu, Jianqiao, et al.
Publicado: (2022) -
Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks
por: Li, Dongji, et al.
Publicado: (2021) -
Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
por: Li, Shuyang, et al.
Publicado: (2021) -
Resource Allocation for Edge Computing without Using Cloud Center in Smart Home Environment: A Pricing Approach
por: Liu, Huan, et al.
Publicado: (2020) -
RELIABLE: Resource Allocation Mechanism for 5G Network using Mobile Edge Computing
por: Pereira, Rickson S., et al.
Publicado: (2020)