Cargando…

SegChaNet: A Novel Model for Lung Cancer Segmentation in CT Scans

Accurate lung tumor identification is crucial for radiation treatment planning. Due to the low contrast of the lung tumor in computed tomography (CT) images, segmentation of the tumor in CT images is challenging. This paper effectively integrates the U-Net with the channel attention module (CAM) to...

Descripción completa

Detalles Bibliográficos
Autor principal: Cifci, Mehmet Akif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124150/
https://www.ncbi.nlm.nih.gov/pubmed/35607427
http://dx.doi.org/10.1155/2022/1139587
Descripción
Sumario:Accurate lung tumor identification is crucial for radiation treatment planning. Due to the low contrast of the lung tumor in computed tomography (CT) images, segmentation of the tumor in CT images is challenging. This paper effectively integrates the U-Net with the channel attention module (CAM) to segment the malignant lung area from the surrounding chest region. The SegChaNet method encodes CT slices of the input lung into feature maps utilizing the trail of encoders. Finally, we explicitly developed a multiscale, dense-feature extraction module to extract multiscale features from the collection of encoded feature maps. We have identified the segmentation map of the lungs by employing the decoders and compared SegChaNet with the state-of-the-art. The model has learned the dense-feature extraction in lung abnormalities, while iterative downsampling followed by iterative upsampling causes the network to remain invariant to the size of the dense abnormality. Experimental results show that the proposed method is accurate and efficient and directly provides explicit lung regions in complex circumstances without postprocessing.