Cargando…
SegChaNet: A Novel Model for Lung Cancer Segmentation in CT Scans
Accurate lung tumor identification is crucial for radiation treatment planning. Due to the low contrast of the lung tumor in computed tomography (CT) images, segmentation of the tumor in CT images is challenging. This paper effectively integrates the U-Net with the channel attention module (CAM) to...
Autor principal: | Cifci, Mehmet Akif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124150/ https://www.ncbi.nlm.nih.gov/pubmed/35607427 http://dx.doi.org/10.1155/2022/1139587 |
Ejemplares similares
-
Liver Tumor Segmentation in CT Scans Using Modified SegNet
por: Almotairi, Sultan, et al.
Publicado: (2020) -
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Hyper-Dense_Lung_Seg: Multimodal-Fusion-Based Modified U-Net for Lung Tumour Segmentation Using Multimodality of CT-PET Scans
por: Alshmrani, Goram Mufarah, et al.
Publicado: (2023) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022)