Cargando…
Deep learning for blind structured illumination microscopy
Blind-structured illumination microscopy (blind-SIM) enhances the optical resolution without the requirement of nonlinear effects or pre-defined illumination patterns. It is thus advantageous in experimental conditions where toxicity or biological fluctuations are an issue. In this work, we introduc...
Autores principales: | Xypakis, Emmanouil, Gosti, Giorgio, Giordani, Taira, Santagati, Raffaele, Ruocco, Giancarlo, Leonetti, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124205/ https://www.ncbi.nlm.nih.gov/pubmed/35597874 http://dx.doi.org/10.1038/s41598-022-12571-0 |
Ejemplares similares
-
Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks
por: Gosti, Giorgio, et al.
Publicado: (2019) -
Electrostatic complementarity at the interface drives transient protein-protein interactions
por: Grassmann, Greta, et al.
Publicado: (2023) -
Improving axial resolution in Structured Illumination Microscopy using deep learning
por: Boland, Miguel A., et al.
Publicado: (2021) -
Deep‐MSIM: Fast Image Reconstruction with Deep Learning in Multifocal Structured Illumination Microscopy
por: Liao, Jianhui, et al.
Publicado: (2023) -
Collective behavior and self-organization in neural rosette morphogenesis
por: Miotto, Mattia, et al.
Publicado: (2023)