Cargando…
Hippocampal representations for deep learning on Alzheimer’s disease
Deep learning offers a powerful approach for analyzing hippocampal changes in Alzheimer’s disease (AD) without relying on handcrafted features. Nevertheless, an input format needs to be selected to pass the image information to the neural network, which has wide ramifications for the analysis, but h...
Autores principales: | Sarasua, Ignacio, Pölsterl, Sebastian, Wachinger, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124220/ https://www.ncbi.nlm.nih.gov/pubmed/35597814 http://dx.doi.org/10.1038/s41598-022-12533-6 |
Ejemplares similares
-
Deep learning for the prediction of type 2 diabetes mellitus from neck-to-knee Dixon MRI in the UK biobank
por: Wachinger, Christian, et al.
Publicado: (2023) -
Can we diagnose mental disorders in children? A large‐scale assessment of machine learning on structural neuroimaging of 6916 children in the adolescent brain cognitive development study
por: Gaus, Richard, et al.
Publicado: (2023) -
A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure
por: Yang, Zhijian, et al.
Publicado: (2021) -
Learning Extremal Representations with Deep Archetypal Analysis
por: Keller, Sebastian Mathias, et al.
Publicado: (2020) -
Deep Learning of Orthographic Representations in Baboons
por: Hannagan, Thomas, et al.
Publicado: (2014)