Cargando…
Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
INTRODUCTION: This study aimed to develop and validate an interpretable machine-learning model based on clinical features for early predicting in-hospital mortality in critically ill patients with sepsis. METHODS: We enrolled all patients with sepsis in the Medical Information Mart for Intensive Car...
Autores principales: | Hu, Chang, Li, Lu, Huang, Weipeng, Wu, Tong, Xu, Qiancheng, Liu, Juan, Hu, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124279/ https://www.ncbi.nlm.nih.gov/pubmed/35399146 http://dx.doi.org/10.1007/s40121-022-00628-6 |
Ejemplares similares
-
Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
por: Hu, Chang, et al.
Publicado: (2022) -
Interpretable Machine Learning to Optimize Early In-Hospital Mortality Prediction for Elderly Patients with Sepsis: A Discovery Study
por: Ke, Xiaowei, et al.
Publicado: (2022) -
Developing an Interpretable Machine Learning Model to Predict in-Hospital Mortality in Sepsis Patients: A Retrospective Temporal Validation Study
por: Li, Shuhe, et al.
Publicado: (2023) -
Association of Thiamine Use with Outcomes in Patients with Sepsis and Alcohol Use Disorder: An Analysis of the MIMIC-III Database
por: Hu, Chang, et al.
Publicado: (2022) -
MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis
por: Rosnati, Margherita, et al.
Publicado: (2021)