Cargando…
Interspecific hybridization in tomato influences endogenous viral sRNAs and alters gene expression
BACKGROUND: Hybridization is associated with the activation of transposable elements and changes in the patterns of gene expression leading to phenotypic changes. However, the underlying mechanisms are not well understood. RESULTS: Here, we describe the changes to the gene expression in interspecifi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124383/ https://www.ncbi.nlm.nih.gov/pubmed/35597968 http://dx.doi.org/10.1186/s13059-022-02685-z |
Sumario: | BACKGROUND: Hybridization is associated with the activation of transposable elements and changes in the patterns of gene expression leading to phenotypic changes. However, the underlying mechanisms are not well understood. RESULTS: Here, we describe the changes to the gene expression in interspecific Solanum hybrids that are associated with small RNAs derived from endogenous (para)retroviruses (EPRV). There were prominent changes to sRNA profiles in these hybrids involving 22-nt species produced in the DCL2 biogenesis pathway, and the hybridization-induced changes to the gene expression were similar to those in a dcl2 mutant. CONCLUSIONS: These findings indicate that hybridization leads to activation of EPRV, perturbation of small RNA profiles, and, consequently, changes in the gene expression. Such hybridization-induced variation in the gene expression could increase the natural phenotypic variation in natural evolution or in breeding for agriculture. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02685-z. |
---|