Cargando…

High-performance thin-layer chromatography in combination with an acetylcholinesterase-inhibition bioassay with pre-oxidation of organothiophosphates to determine neurotoxic effects in storm, waste, and surface water

Pesticides such as organothiophosphates (OTPs) are neurotoxically active and enter the aquatic environment. Bioassays, using acetylcholinesterase (AChE), a suitable substrate and reactant, can be applied for the photometric detection of AChE-inhibiton (AChE-I) effects. The oxidized forms of OTPs, so...

Descripción completa

Detalles Bibliográficos
Autores principales: Baetz, Nicolai, Schmidt, Torsten C., Tuerk, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124651/
https://www.ncbi.nlm.nih.gov/pubmed/35583680
http://dx.doi.org/10.1007/s00216-022-04068-6
Descripción
Sumario:Pesticides such as organothiophosphates (OTPs) are neurotoxically active and enter the aquatic environment. Bioassays, using acetylcholinesterase (AChE), a suitable substrate and reactant, can be applied for the photometric detection of AChE-inhibiton (AChE-I) effects. The oxidized forms of OTPs, so-called oxons, have higher inhibition potentials for AChE. Therefore, a higher sensitivity is achieved for application of oxidized samples to the AChE assay. In this study, the oxidation of malathion, parathion, and chlorpyrifos by n-bromosuccinimide (NBS) was investigated in an approach combining high-performance thin-layer chromatography (HPTLC) with an AChE-I assay. Two AChE application approaches, immersion and spraying, were compared regarding sensitivity, precision, and general feasibility of the OTP effect detection. The oxidation by NBS led to an activation of the OTPs and a strong increase in sensitivity similar to the oxons tested. The sensitivity and precision of the two application techniques were similar, although the spray method was slightly more sensitive to the oxidized OTPs. The 10% inhibition concentrations (IC(10)) for the spray approach were 0.26, 0.75, and 0.35 ng/spot for activated malathion, parathion, and chlorpyrifos, respectively. AChE-I effect recoveries in samples from a stormwater retention basin and receiving stream were between 69 and 92% for malathion, parathion, and chlorpyrifos. The overall workflow, including sample enrichment by solid-phase extraction, HPTLC, oxidation of OTPs, and AChE-I assay, was demonstrated to be suitable for the detection of AChE-I effects in native water samples. An effect of unknown origin was found in a sample from a stormwater retention basin. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00216-022-04068-6.