Cargando…
Electrochemical Sensors for Sustainable Precision Agriculture—A Review
Greenhouse gases released by agriculture account for 19% of global greenhouse gas emission. Moreover, the abuse of pesticides and fertilizers is a fundamental cause of soil and water pollution. Finding sustainable countermeasures for these problems requires completely new approaches and the integrat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124781/ https://www.ncbi.nlm.nih.gov/pubmed/35615311 http://dx.doi.org/10.3389/fchem.2022.848320 |
Sumario: | Greenhouse gases released by agriculture account for 19% of global greenhouse gas emission. Moreover, the abuse of pesticides and fertilizers is a fundamental cause of soil and water pollution. Finding sustainable countermeasures for these problems requires completely new approaches and the integration of knowledge. Precision agriculture (PA) is a technology that reduces environmental pollution with minimal input (e.g., fertilizer, herbicides, and pesticides) and maximize the production of high-quality crops by monitoring the conditions and environment of farmland and crops. However, the lack of data—a key technology for realizing PA—remains a major obstacle to the large-scale adoption of PA. Herein, we discuss important research issues, such as data managements and analysis for accurate decision-making, and specific data acquisition strategies. Moreover, we systematically review and discuss electrochemical sensors, including sensors that monitor the plant, soil, and environmental conditions that directly affect plant growth. |
---|