Cargando…

Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models

Background: We evaluated the implications of different approaches to characterize the uncertainty of calibrated parameters of microsimulation decision models (DMs) and quantified the value of such uncertainty in decision making. Methods: We calibrated the natural history model of CRC to simulated ep...

Descripción completa

Detalles Bibliográficos
Autores principales: Alarid-Escudero, Fernando, Knudsen, Amy B., Ozik, Jonathan, Collier, Nicholson, Kuntz, Karen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124835/
https://www.ncbi.nlm.nih.gov/pubmed/35615677
http://dx.doi.org/10.3389/fphys.2022.780917
_version_ 1784711812104585216
author Alarid-Escudero, Fernando
Knudsen, Amy B.
Ozik, Jonathan
Collier, Nicholson
Kuntz, Karen M.
author_facet Alarid-Escudero, Fernando
Knudsen, Amy B.
Ozik, Jonathan
Collier, Nicholson
Kuntz, Karen M.
author_sort Alarid-Escudero, Fernando
collection PubMed
description Background: We evaluated the implications of different approaches to characterize the uncertainty of calibrated parameters of microsimulation decision models (DMs) and quantified the value of such uncertainty in decision making. Methods: We calibrated the natural history model of CRC to simulated epidemiological data with different degrees of uncertainty and obtained the joint posterior distribution of the parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis (PSA) on all the model parameters with different characterizations of the uncertainty of the calibrated parameters. We estimated the value of uncertainty of the various characterizations with a value of information analysis. We conducted all analyses using high-performance computing resources running the Extreme-scale Model Exploration with Swift (EMEWS) framework. Results: The posterior distribution had a high correlation among some parameters. The parameters of the Weibull hazard function for the age of onset of adenomas had the highest posterior correlation of −0.958. When comparing full posterior distributions and the maximum-a-posteriori estimate of the calibrated parameters, there is little difference in the spread of the distribution of the CEA outcomes with a similar expected value of perfect information (EVPI) of $653 and $685, respectively, at a willingness-to-pay (WTP) threshold of $66,000 per quality-adjusted life year (QALY). Ignoring correlation on the calibrated parameters’ posterior distribution produced the broadest distribution of CEA outcomes and the highest EVPI of $809 at the same WTP threshold. Conclusion: Different characterizations of the uncertainty of calibrated parameters affect the expected value of eliminating parametric uncertainty on the CEA. Ignoring inherent correlation among calibrated parameters on a PSA overestimates the value of uncertainty.
format Online
Article
Text
id pubmed-9124835
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91248352022-05-24 Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models Alarid-Escudero, Fernando Knudsen, Amy B. Ozik, Jonathan Collier, Nicholson Kuntz, Karen M. Front Physiol Physiology Background: We evaluated the implications of different approaches to characterize the uncertainty of calibrated parameters of microsimulation decision models (DMs) and quantified the value of such uncertainty in decision making. Methods: We calibrated the natural history model of CRC to simulated epidemiological data with different degrees of uncertainty and obtained the joint posterior distribution of the parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis (PSA) on all the model parameters with different characterizations of the uncertainty of the calibrated parameters. We estimated the value of uncertainty of the various characterizations with a value of information analysis. We conducted all analyses using high-performance computing resources running the Extreme-scale Model Exploration with Swift (EMEWS) framework. Results: The posterior distribution had a high correlation among some parameters. The parameters of the Weibull hazard function for the age of onset of adenomas had the highest posterior correlation of −0.958. When comparing full posterior distributions and the maximum-a-posteriori estimate of the calibrated parameters, there is little difference in the spread of the distribution of the CEA outcomes with a similar expected value of perfect information (EVPI) of $653 and $685, respectively, at a willingness-to-pay (WTP) threshold of $66,000 per quality-adjusted life year (QALY). Ignoring correlation on the calibrated parameters’ posterior distribution produced the broadest distribution of CEA outcomes and the highest EVPI of $809 at the same WTP threshold. Conclusion: Different characterizations of the uncertainty of calibrated parameters affect the expected value of eliminating parametric uncertainty on the CEA. Ignoring inherent correlation among calibrated parameters on a PSA overestimates the value of uncertainty. Frontiers Media S.A. 2022-05-09 /pmc/articles/PMC9124835/ /pubmed/35615677 http://dx.doi.org/10.3389/fphys.2022.780917 Text en Copyright © 2022 Alarid-Escudero, Knudsen, Ozik, Collier and Kuntz. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Alarid-Escudero, Fernando
Knudsen, Amy B.
Ozik, Jonathan
Collier, Nicholson
Kuntz, Karen M.
Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title_full Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title_fullStr Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title_full_unstemmed Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title_short Characterization and Valuation of the Uncertainty of Calibrated Parameters in Microsimulation Decision Models
title_sort characterization and valuation of the uncertainty of calibrated parameters in microsimulation decision models
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124835/
https://www.ncbi.nlm.nih.gov/pubmed/35615677
http://dx.doi.org/10.3389/fphys.2022.780917
work_keys_str_mv AT alaridescuderofernando characterizationandvaluationoftheuncertaintyofcalibratedparametersinmicrosimulationdecisionmodels
AT knudsenamyb characterizationandvaluationoftheuncertaintyofcalibratedparametersinmicrosimulationdecisionmodels
AT ozikjonathan characterizationandvaluationoftheuncertaintyofcalibratedparametersinmicrosimulationdecisionmodels
AT colliernicholson characterizationandvaluationoftheuncertaintyofcalibratedparametersinmicrosimulationdecisionmodels
AT kuntzkarenm characterizationandvaluationoftheuncertaintyofcalibratedparametersinmicrosimulationdecisionmodels