Cargando…
A Motor Imagery Signals Classification Method via the Difference of EEG Signals Between Left and Right Hemispheric Electrodes
Brain-computer interface (BCI) based on motor imagery (MI) can help patients with limb movement disorders in their normal life. In order to develop an efficient BCI system, it is necessary to decode high-accuracy motion intention by electroencephalogram (EEG) with low signal-to-noise ratio. In this...
Autores principales: | Lun, Xiangmin, Liu, Jianwei, Zhang, Yifei, Hao, Ziqian, Hou, Yimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124859/ https://www.ncbi.nlm.nih.gov/pubmed/35615273 http://dx.doi.org/10.3389/fnins.2022.865594 |
Ejemplares similares
-
A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification
por: Lun, Xiangmin, et al.
Publicado: (2023) -
A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals
por: Lun, Xiangmin, et al.
Publicado: (2020) -
Motor imagery EEG signal classification with a multivariate time series approach
por: Velasco, I., et al.
Publicado: (2023) -
Slowing of Motor Imagery after a Right Hemispheric Stroke
por: Malouin, Francine, et al.
Publicado: (2012) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016)