Cargando…
A TDF-WNSP-WLFM algorithm for product recommendation based on multiple types of implicit user behavior
E-commerce platforms usually train their recommender system models to achieve personalized recommendations based on user behavior data. User behavior can be categorized into implicit and explicit feedback. Explicit feedback data have been well studied. However, the implicit feedback data still have...
Autores principales: | Fu, Junchen, Qi, Zhaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125355/ https://www.ncbi.nlm.nih.gov/pubmed/35645461 http://dx.doi.org/10.1007/s11227-022-04580-7 |
Ejemplares similares
-
Neural Matrix Factorization Recommendation for User Preference Prediction Based on Explicit and Implicit Feedback
por: Liu, Huazhen, et al.
Publicado: (2022) -
Who Learns More? Cultural Differences in Implicit Sequence Learning
por: Fu, Qiufang, et al.
Publicado: (2013) -
Negative Affect Reduces Performance in Implicit Sequence Learning
por: Shang, Junchen, et al.
Publicado: (2013) -
Implicit User Interest Profile
por: Chan, K, et al.
Publicado: (2002) -
Long-term efficacy and safety of E/C/F/TDF vs EFV/FTC/TDF and ATV+RTV+FTC/TDF in HIV-1-infected treatment-naïve subjects ≥50 years
por: Gazzard, Brian, et al.
Publicado: (2014)