Cargando…
Applications of deep learning for phishing detection: a systematic literature review
Phishing attacks aim to steal confidential information using sophisticated methods, techniques, and tools such as phishing through content injection, social engineering, online social networks, and mobile applications. To avoid and mitigate the risks of these attacks, several phishing detection appr...
Autores principales: | Catal, Cagatay, Giray, Görkem, Tekinerdogan, Bedir, Kumar, Sandeep, Shukla, Suyash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125357/ https://www.ncbi.nlm.nih.gov/pubmed/35645443 http://dx.doi.org/10.1007/s10115-022-01672-x |
Ejemplares similares
-
Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks
por: Kang, Ziqiu, et al.
Publicado: (2021) -
A hybrid DNN–LSTM model for detecting phishing URLs
por: Ozcan, Alper, et al.
Publicado: (2021) -
Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model
por: Kaya, Aydin, et al.
Publicado: (2020) -
Designing a reference architecture for health information systems
por: Tummers, Joep, et al.
Publicado: (2021) -
A systematic review on application of deep learning in digestive system image processing
por: Zhuang, Huangming, et al.
Publicado: (2021)