Cargando…
MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks
Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic fields induced by neuronal activity; however, signal from non-neuronal sources can corrupt the data. Eye-blinks, saccades, and cardiac activity are three of the most common sources of non-neuronal artifacts. The...
Autores principales: | Treacher, Alex H., Garg, Prabhat, Davenport, Elizabeth, Godwin, Ryan, Proskovec, Amy, Bezerra, Leonardo Guimaraes, Murugesan, Gowtham, Wagner, Ben, Whitlow, Christopher T., Stitzel, Joel D., Maldjian, Joseph A., Montillo, Albert A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125748/ https://www.ncbi.nlm.nih.gov/pubmed/34274419 http://dx.doi.org/10.1016/j.neuroimage.2021.118402 |
Ejemplares similares
-
An estimate of the potentials of a megnetic linear accelerator (MAGLAC)
por: Arendt, F
Publicado: (1980) -
MEG measured delta waves increase in adolescents after concussion
por: Davenport, Elizabeth M., et al.
Publicado: (2022) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011) -
Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
MEG Sensor Selection for Neural Speech Decoding
por: DASH, DEBADATTA, et al.
Publicado: (2020)