Cargando…

Exploring the Deep-Learning Techniques in Detecting the Presence of Coronavirus in the Chest X-Ray Images: A Comprehensive Review

The deadly coronavirus (COVID-19) is one of the dangerous diseases affecting the entire world and is fastly spreading disease. This spread can be reduced by detecting and quarantining the patients at an earlier stage. The most common diagnostic tool for detecting the coronavirus is the Reverse trans...

Descripción completa

Detalles Bibliográficos
Autor principal: Chandrasekar, K. Silpaja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126247/
https://www.ncbi.nlm.nih.gov/pubmed/35645554
http://dx.doi.org/10.1007/s11831-022-09768-x
Descripción
Sumario:The deadly coronavirus (COVID-19) is one of the dangerous diseases affecting the entire world and is fastly spreading disease. This spread can be reduced by detecting and quarantining the patients at an earlier stage. The most common diagnostic tool for detecting the coronavirus is the Reverse transcription-polymerase chain reaction (RT-PCR) test which is time-consuming and also needs more equipment and manpower. Furthermore, many countries had a deficit of RTPCR kits. This is why it is exceptionally very crucial to develop artificial intelligence (AI) techniques to detect the outbreak of coronavirus. This motivated many researchers to involve deep-learning methods using X-ray images for more decisive analysis. Thus, this paper outlines many papers that used traditional and pre-trained deep learning methods that are newly developed to reduce the spread of COVID-19 disease. Specifically, advanced deep learning methods play a critical role in extracting the features from the chest X-ray images. These features are then used to classify whether the patient is affected with coronavirus or not. Besides, this paper shows that deep learning techniques have probable applications in the medical field.