Cargando…
Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling
The non-isothermal crosslinking process of ethylene vinyl acetate (EVA) initiated by several crosslinking agents was studied by using differential scanning calorimetry (DSC). The crosslinking agent tert-butylperoxy 2-ethylhexyl carbonate (TBEC) exhibited much shorter reaction time and lower reaction...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126645/ https://www.ncbi.nlm.nih.gov/pubmed/35685181 http://dx.doi.org/10.1039/d2ra01994a |
_version_ | 1784712171410685952 |
---|---|
author | Zeng, Fanwei Guo, Xing Sun, Li He, Xuelian Zeng, Zuoxiang Liu, Zhen |
author_facet | Zeng, Fanwei Guo, Xing Sun, Li He, Xuelian Zeng, Zuoxiang Liu, Zhen |
author_sort | Zeng, Fanwei |
collection | PubMed |
description | The non-isothermal crosslinking process of ethylene vinyl acetate (EVA) initiated by several crosslinking agents was studied by using differential scanning calorimetry (DSC). The crosslinking agent tert-butylperoxy 2-ethylhexyl carbonate (TBEC) exhibited much shorter reaction time and lower reaction temperature. The effect of the crosslinking agent TBEC on the EVA crosslinking process was further analyzed by using Avrami, Ozawa, Mo and Flynn-Wall-Ozawa (FWO) methods, respectively. The small fluctuations in the values of Avrami exponent n and Mo parameter a indicate that the EVA crosslinking mechanism is basically unchanged with increasing heating rate and crosslinking agent content. The change of the Ozawa exponent m is presumably due to the increase in viscosity of EVA/TBEC samples during the crosslinking process. The heating/cooling function F(T) values and the activation energy E(a) are dependent on the conversion rate α. In addition, E(a) shows irregular changes in the early stages of crosslinking, and increases with the increase of conversion rate α in the later stages of crosslinking. |
format | Online Article Text |
id | pubmed-9126645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-91266452022-06-08 Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling Zeng, Fanwei Guo, Xing Sun, Li He, Xuelian Zeng, Zuoxiang Liu, Zhen RSC Adv Chemistry The non-isothermal crosslinking process of ethylene vinyl acetate (EVA) initiated by several crosslinking agents was studied by using differential scanning calorimetry (DSC). The crosslinking agent tert-butylperoxy 2-ethylhexyl carbonate (TBEC) exhibited much shorter reaction time and lower reaction temperature. The effect of the crosslinking agent TBEC on the EVA crosslinking process was further analyzed by using Avrami, Ozawa, Mo and Flynn-Wall-Ozawa (FWO) methods, respectively. The small fluctuations in the values of Avrami exponent n and Mo parameter a indicate that the EVA crosslinking mechanism is basically unchanged with increasing heating rate and crosslinking agent content. The change of the Ozawa exponent m is presumably due to the increase in viscosity of EVA/TBEC samples during the crosslinking process. The heating/cooling function F(T) values and the activation energy E(a) are dependent on the conversion rate α. In addition, E(a) shows irregular changes in the early stages of crosslinking, and increases with the increase of conversion rate α in the later stages of crosslinking. The Royal Society of Chemistry 2022-05-23 /pmc/articles/PMC9126645/ /pubmed/35685181 http://dx.doi.org/10.1039/d2ra01994a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zeng, Fanwei Guo, Xing Sun, Li He, Xuelian Zeng, Zuoxiang Liu, Zhen Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title | Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title_full | Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title_fullStr | Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title_full_unstemmed | Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title_short | Non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
title_sort | non-isothermal crosslinking of ethylene vinyl acetate initiated by crosslinking agents: kinetic modelling |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126645/ https://www.ncbi.nlm.nih.gov/pubmed/35685181 http://dx.doi.org/10.1039/d2ra01994a |
work_keys_str_mv | AT zengfanwei nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling AT guoxing nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling AT sunli nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling AT hexuelian nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling AT zengzuoxiang nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling AT liuzhen nonisothermalcrosslinkingofethylenevinylacetateinitiatedbycrosslinkingagentskineticmodelling |