Cargando…
Multimodal Feature Fusion Based Hypergraph Learning Model
Hypergraph learning is a new research hotspot in the machine learning field. The performance of the hypergraph learning model depends on the quality of the hypergraph structure built by different feature extraction methods as well as its incidence matrix. However, the existing models are all hypergr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126688/ https://www.ncbi.nlm.nih.gov/pubmed/35615554 http://dx.doi.org/10.1155/2022/9073652 |
_version_ | 1784712182187950080 |
---|---|
author | Yang, Zhe Xu, Liangkui Zhao, Lei |
author_facet | Yang, Zhe Xu, Liangkui Zhao, Lei |
author_sort | Yang, Zhe |
collection | PubMed |
description | Hypergraph learning is a new research hotspot in the machine learning field. The performance of the hypergraph learning model depends on the quality of the hypergraph structure built by different feature extraction methods as well as its incidence matrix. However, the existing models are all hypergraph structures built based on one feature extraction method, with limited feature extraction and abstract expression ability. This paper proposed a multimodal feature fusion method, which firstly built a single modal hypergraph structure based on different feature extraction methods, and then extended the hypergraph incidence matrix and weight matrix of different modals. The extended matrices fuse the multimodal abstract feature and an expanded Markov random walk range during model learning, with stronger feature expression ability. However, the extended multimodal incidence matrix has a high scale and high computational cost. Therefore, the Laplacian matrix fusion method was proposed, which performed Laplacian matrix transformation on the incidence matrix and weight matrix of every model, respectively, and then conducted a weighted superposition on these Laplacian matrices for subsequent model training. The tests on four different types of datasets indicate that the hypergraph learning model obtained after multimodal feature fusion has a better classification performance than the single modal model. After Laplace matrix fusion, the average time can be reduced by about 40% compared with the extended incidence matrix, the classification performance can be further improved, and the index F1 can be improved by 8.4%. |
format | Online Article Text |
id | pubmed-9126688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91266882022-05-24 Multimodal Feature Fusion Based Hypergraph Learning Model Yang, Zhe Xu, Liangkui Zhao, Lei Comput Intell Neurosci Research Article Hypergraph learning is a new research hotspot in the machine learning field. The performance of the hypergraph learning model depends on the quality of the hypergraph structure built by different feature extraction methods as well as its incidence matrix. However, the existing models are all hypergraph structures built based on one feature extraction method, with limited feature extraction and abstract expression ability. This paper proposed a multimodal feature fusion method, which firstly built a single modal hypergraph structure based on different feature extraction methods, and then extended the hypergraph incidence matrix and weight matrix of different modals. The extended matrices fuse the multimodal abstract feature and an expanded Markov random walk range during model learning, with stronger feature expression ability. However, the extended multimodal incidence matrix has a high scale and high computational cost. Therefore, the Laplacian matrix fusion method was proposed, which performed Laplacian matrix transformation on the incidence matrix and weight matrix of every model, respectively, and then conducted a weighted superposition on these Laplacian matrices for subsequent model training. The tests on four different types of datasets indicate that the hypergraph learning model obtained after multimodal feature fusion has a better classification performance than the single modal model. After Laplace matrix fusion, the average time can be reduced by about 40% compared with the extended incidence matrix, the classification performance can be further improved, and the index F1 can be improved by 8.4%. Hindawi 2022-05-16 /pmc/articles/PMC9126688/ /pubmed/35615554 http://dx.doi.org/10.1155/2022/9073652 Text en Copyright © 2022 Zhe Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Zhe Xu, Liangkui Zhao, Lei Multimodal Feature Fusion Based Hypergraph Learning Model |
title | Multimodal Feature Fusion Based Hypergraph Learning Model |
title_full | Multimodal Feature Fusion Based Hypergraph Learning Model |
title_fullStr | Multimodal Feature Fusion Based Hypergraph Learning Model |
title_full_unstemmed | Multimodal Feature Fusion Based Hypergraph Learning Model |
title_short | Multimodal Feature Fusion Based Hypergraph Learning Model |
title_sort | multimodal feature fusion based hypergraph learning model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126688/ https://www.ncbi.nlm.nih.gov/pubmed/35615554 http://dx.doi.org/10.1155/2022/9073652 |
work_keys_str_mv | AT yangzhe multimodalfeaturefusionbasedhypergraphlearningmodel AT xuliangkui multimodalfeaturefusionbasedhypergraphlearningmodel AT zhaolei multimodalfeaturefusionbasedhypergraphlearningmodel |