Cargando…
Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective
ABSTRACT: Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126699/ https://www.ncbi.nlm.nih.gov/pubmed/35606652 http://dx.doi.org/10.1007/s00109-022-02208-0 |
_version_ | 1784712184807292928 |
---|---|
author | JT, Schwartze M, Havenga WAM, Bakker AC, Bradshaw SA, Nicklin |
author_facet | JT, Schwartze M, Havenga WAM, Bakker AC, Bradshaw SA, Nicklin |
author_sort | JT, Schwartze |
collection | PubMed |
description | ABSTRACT: Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. KEY MESSAGES: First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs. |
format | Online Article Text |
id | pubmed-9126699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-91266992022-05-24 Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective JT, Schwartze M, Havenga WAM, Bakker AC, Bradshaw SA, Nicklin J Mol Med (Berl) Review ABSTRACT: Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. KEY MESSAGES: First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs. Springer Berlin Heidelberg 2022-05-24 2022 /pmc/articles/PMC9126699/ /pubmed/35606652 http://dx.doi.org/10.1007/s00109-022-02208-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review JT, Schwartze M, Havenga WAM, Bakker AC, Bradshaw SA, Nicklin Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title | Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title_full | Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title_fullStr | Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title_full_unstemmed | Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title_short | Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
title_sort | adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126699/ https://www.ncbi.nlm.nih.gov/pubmed/35606652 http://dx.doi.org/10.1007/s00109-022-02208-0 |
work_keys_str_mv | AT jtschwartze adenoviralvectorsforcardiovasculargenetherapyapplicationsaclinicalandindustryperspective AT mhavenga adenoviralvectorsforcardiovasculargenetherapyapplicationsaclinicalandindustryperspective AT wambakker adenoviralvectorsforcardiovasculargenetherapyapplicationsaclinicalandindustryperspective AT acbradshaw adenoviralvectorsforcardiovasculargenetherapyapplicationsaclinicalandindustryperspective AT sanicklin adenoviralvectorsforcardiovasculargenetherapyapplicationsaclinicalandindustryperspective |