Cargando…

A Multimodel Fusion Method for Cardiovascular Disease Detection Using ECG

Objective. Electrocardiogram (ECG) is an important diagnostic tool that has been the subject of much research in recent years. Owing to a lack of well-labeled ECG record databases, most of this work has focused on heartbeat arrhythmia detection based on ECG signal quality. Approach. A record quality...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Guanghui, Zhang, Jiajian, Mao, Dandan, Chen, Genlang, Pang, Chaoyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126725/
https://www.ncbi.nlm.nih.gov/pubmed/35615106
http://dx.doi.org/10.1155/2022/3561147
Descripción
Sumario:Objective. Electrocardiogram (ECG) is an important diagnostic tool that has been the subject of much research in recent years. Owing to a lack of well-labeled ECG record databases, most of this work has focused on heartbeat arrhythmia detection based on ECG signal quality. Approach. A record quality filter was designed to judge ECG signal quality, and a random forest method, a multilayer perceptron, and a residual neural network (RESNET)-based convolutional neural network were implemented to provide baselines for ECG record classification according to three different principles. A new multimodel method was constructed by fusing the random forest and RESNET approaches. Main Results. Owing to its ability to combine discriminative human-crafted features with RESNET deep features, the proposed new method showed over 88% classification accuracy and yielded the best results in comparison with alternative methods. Significance. A new multimodel fusion method was presented for abnormal cardiovascular detection based on ECG data. The experimental results show that separable convolution and multiscale convolution are vital for ECG record classification and are effective for use with one-dimensional ECG sequences.