Cargando…
Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection
BACKGROUND: To understand the extent and frequency of soft-tissue adjustment required to achieve mediolateral (ML) balance in measured resection (MR) vs gap-balancing (GB) total knee arthroplasty, this study compared ML balance and joint laxity throughout flexion between the 2 techniques. The precis...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126743/ https://www.ncbi.nlm.nih.gov/pubmed/35620585 http://dx.doi.org/10.1016/j.artd.2022.03.025 |
_version_ | 1784712195836215296 |
---|---|
author | Orsi, Alexander D. Wakelin, Edgar A. Plaskos, Christopher Gupta, Sanjeev Sullivan, James A. |
author_facet | Orsi, Alexander D. Wakelin, Edgar A. Plaskos, Christopher Gupta, Sanjeev Sullivan, James A. |
author_sort | Orsi, Alexander D. |
collection | PubMed |
description | BACKGROUND: To understand the extent and frequency of soft-tissue adjustment required to achieve mediolateral (ML) balance in measured resection (MR) vs gap-balancing (GB) total knee arthroplasty, this study compared ML balance and joint laxity throughout flexion between the 2 techniques. The precision of predictive GB in achieving ML balance and laxity was also assessed. METHODS: Two surgeons performed 95 robot-assisted GB total knee arthroplasties with predictive balancing, limiting tibial varus to 3° and adjusting femoral positioning to optimize balance. A robotic ligament tensioner measured joint laxity. Planned MR (pMR) was simulated by applying neutral tibial and femoral coronal resections and 3° of external femoral rotation. ML balance, laxity, component alignment, and resection depths were compared between planned GB (pGB) and pMR. ML balance and laxity were compared between pGB and final GB (fGB). RESULTS: The proportion of knees with >2 mm of ML imbalance in flexion or extension ranged from 3% to 18% for pGB vs 50% to 53% for pMR (P < .001). Rates of ML imbalance >3 mm ranged from 0% to 9% for pGB and 30% to 38% for MR (P < .001). The mean pMR laxity was 1.9 mm tighter medially and 1.1 mm tighter laterally than pGB throughout flexion. The mean fGB laxity was greater than the mean pGB laxity by 0.5 mm medially and 1.2 mm laterally (P < .001). CONCLUSION: MR led to tighter joints than GB, with ML gap imbalances >3 mm in 30% of knees. GB planning improved ML balance throughout flexion but increased femoral posterior rotation variability and bone resection compared to MR. fGB laxity was likely not clinically significantly different than pGB. |
format | Online Article Text |
id | pubmed-9126743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91267432022-05-25 Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection Orsi, Alexander D. Wakelin, Edgar A. Plaskos, Christopher Gupta, Sanjeev Sullivan, James A. Arthroplast Today Original Research BACKGROUND: To understand the extent and frequency of soft-tissue adjustment required to achieve mediolateral (ML) balance in measured resection (MR) vs gap-balancing (GB) total knee arthroplasty, this study compared ML balance and joint laxity throughout flexion between the 2 techniques. The precision of predictive GB in achieving ML balance and laxity was also assessed. METHODS: Two surgeons performed 95 robot-assisted GB total knee arthroplasties with predictive balancing, limiting tibial varus to 3° and adjusting femoral positioning to optimize balance. A robotic ligament tensioner measured joint laxity. Planned MR (pMR) was simulated by applying neutral tibial and femoral coronal resections and 3° of external femoral rotation. ML balance, laxity, component alignment, and resection depths were compared between planned GB (pGB) and pMR. ML balance and laxity were compared between pGB and final GB (fGB). RESULTS: The proportion of knees with >2 mm of ML imbalance in flexion or extension ranged from 3% to 18% for pGB vs 50% to 53% for pMR (P < .001). Rates of ML imbalance >3 mm ranged from 0% to 9% for pGB and 30% to 38% for MR (P < .001). The mean pMR laxity was 1.9 mm tighter medially and 1.1 mm tighter laterally than pGB throughout flexion. The mean fGB laxity was greater than the mean pGB laxity by 0.5 mm medially and 1.2 mm laterally (P < .001). CONCLUSION: MR led to tighter joints than GB, with ML gap imbalances >3 mm in 30% of knees. GB planning improved ML balance throughout flexion but increased femoral posterior rotation variability and bone resection compared to MR. fGB laxity was likely not clinically significantly different than pGB. Elsevier 2022-05-20 /pmc/articles/PMC9126743/ /pubmed/35620585 http://dx.doi.org/10.1016/j.artd.2022.03.025 Text en © 2022 Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Orsi, Alexander D. Wakelin, Edgar A. Plaskos, Christopher Gupta, Sanjeev Sullivan, James A. Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title | Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title_full | Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title_fullStr | Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title_full_unstemmed | Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title_short | Predictive Gap-balancing Reduces the Extent of Soft-tissue Adjustment Required After Bony Resection in Robot-assisted Total Knee Arthroplasty—A Comparison With Simulated Measured Resection |
title_sort | predictive gap-balancing reduces the extent of soft-tissue adjustment required after bony resection in robot-assisted total knee arthroplasty—a comparison with simulated measured resection |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126743/ https://www.ncbi.nlm.nih.gov/pubmed/35620585 http://dx.doi.org/10.1016/j.artd.2022.03.025 |
work_keys_str_mv | AT orsialexanderd predictivegapbalancingreducestheextentofsofttissueadjustmentrequiredafterbonyresectioninrobotassistedtotalkneearthroplastyacomparisonwithsimulatedmeasuredresection AT wakelinedgara predictivegapbalancingreducestheextentofsofttissueadjustmentrequiredafterbonyresectioninrobotassistedtotalkneearthroplastyacomparisonwithsimulatedmeasuredresection AT plaskoschristopher predictivegapbalancingreducestheextentofsofttissueadjustmentrequiredafterbonyresectioninrobotassistedtotalkneearthroplastyacomparisonwithsimulatedmeasuredresection AT guptasanjeev predictivegapbalancingreducestheextentofsofttissueadjustmentrequiredafterbonyresectioninrobotassistedtotalkneearthroplastyacomparisonwithsimulatedmeasuredresection AT sullivanjamesa predictivegapbalancingreducestheextentofsofttissueadjustmentrequiredafterbonyresectioninrobotassistedtotalkneearthroplastyacomparisonwithsimulatedmeasuredresection |