Cargando…
A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease
Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126840/ https://www.ncbi.nlm.nih.gov/pubmed/35664700 http://dx.doi.org/10.1016/j.omtn.2022.04.031 |
_version_ | 1784712217248137216 |
---|---|
author | Kotowska-Zimmer, Anna Przybyl, Lukasz Pewinska, Marianna Suszynska-Zajczyk, Joanna Wronka, Dorota Figiel, Maciej Olejniczak, Marta |
author_facet | Kotowska-Zimmer, Anna Przybyl, Lukasz Pewinska, Marianna Suszynska-Zajczyk, Joanna Wronka, Dorota Figiel, Maciej Olejniczak, Marta |
author_sort | Kotowska-Zimmer, Anna |
collection | PubMed |
description | Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpose of this study was to test the efficacy, selectivity, and safety of two vector-based RNAi triggers in an animal model of HD. CAG repeat-targeting short hairpin RNA (shRNA) and artificial miRNA (amiRNA) were delivered to the brains of YAC128 mice via intrastriatal injection of AAV5 vectors. Molecular tests demonstrated that both the shRNA and amiRNA reduced the mutant huntingtin level by 50% without influencing endogenous mouse huntingtin. In addition, a concentration-dependent reduction in HTT aggregates in the striatum was observed. In contrast to the shRNA, the amiRNA was well tolerated and did not show signs of toxicity during the course of the experiment up to 20 weeks post injection. Interestingly, amiRNA treatment reduced the spleen weight to values characteristic of healthy (WT) mice and improved motor performance on the static rod test. These preclinical data demonstrate that the CAG-targeting strategy and amiRNA could make an original and valuable contribution to currently used therapeutic approaches for HD. |
format | Online Article Text |
id | pubmed-9126840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-91268402022-06-04 A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease Kotowska-Zimmer, Anna Przybyl, Lukasz Pewinska, Marianna Suszynska-Zajczyk, Joanna Wronka, Dorota Figiel, Maciej Olejniczak, Marta Mol Ther Nucleic Acids Original Article Among the many proposed therapeutic strategies for Huntington's disease (HD), allele-selective therapies are the most desirable but also the most challenging. RNA interference (RNAi) tools that target CAG repeats selectively reduce the mutant huntingtin level in cellular models of HD. The purpose of this study was to test the efficacy, selectivity, and safety of two vector-based RNAi triggers in an animal model of HD. CAG repeat-targeting short hairpin RNA (shRNA) and artificial miRNA (amiRNA) were delivered to the brains of YAC128 mice via intrastriatal injection of AAV5 vectors. Molecular tests demonstrated that both the shRNA and amiRNA reduced the mutant huntingtin level by 50% without influencing endogenous mouse huntingtin. In addition, a concentration-dependent reduction in HTT aggregates in the striatum was observed. In contrast to the shRNA, the amiRNA was well tolerated and did not show signs of toxicity during the course of the experiment up to 20 weeks post injection. Interestingly, amiRNA treatment reduced the spleen weight to values characteristic of healthy (WT) mice and improved motor performance on the static rod test. These preclinical data demonstrate that the CAG-targeting strategy and amiRNA could make an original and valuable contribution to currently used therapeutic approaches for HD. American Society of Gene & Cell Therapy 2022-05-05 /pmc/articles/PMC9126840/ /pubmed/35664700 http://dx.doi.org/10.1016/j.omtn.2022.04.031 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Article Kotowska-Zimmer, Anna Przybyl, Lukasz Pewinska, Marianna Suszynska-Zajczyk, Joanna Wronka, Dorota Figiel, Maciej Olejniczak, Marta A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title | A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title_full | A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title_fullStr | A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title_full_unstemmed | A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title_short | A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease |
title_sort | cag repeat-targeting artificial mirna lowers the mutant huntingtin level in the yac128 model of huntington's disease |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126840/ https://www.ncbi.nlm.nih.gov/pubmed/35664700 http://dx.doi.org/10.1016/j.omtn.2022.04.031 |
work_keys_str_mv | AT kotowskazimmeranna acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT przybyllukasz acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT pewinskamarianna acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT suszynskazajczykjoanna acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT wronkadorota acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT figielmaciej acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT olejniczakmarta acagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT kotowskazimmeranna cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT przybyllukasz cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT pewinskamarianna cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT suszynskazajczykjoanna cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT wronkadorota cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT figielmaciej cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease AT olejniczakmarta cagrepeattargetingartificialmirnalowersthemutanthuntingtinlevelintheyac128modelofhuntingtonsdisease |