Cargando…

Biofilms as agents of Ediacara-style fossilization

Earth’s earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as “Ediacara-style” preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic...

Descripción completa

Detalles Bibliográficos
Autores principales: Slagter, Silvina, Hao, Weiduo, Planavsky, Noah J., Konhauser, Kurt O., Tarhan, Lidya G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127100/
https://www.ncbi.nlm.nih.gov/pubmed/35606399
http://dx.doi.org/10.1038/s41598-022-12473-1
Descripción
Sumario:Earth’s earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as “Ediacara-style” preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic Ediacara Biota and associated textural impressions attributed to microbial matgrounds that were integral to the ecology of Ediacara communities. Here, we use an experimental approach to interrogate to what extent the presence of mat-forming microorganisms was likewise critical to the Ediacara-style fossilization of these soft-bodied organisms. We find evidence that biofilms can play an instrumental role in fostering fossilization. Rapid silica precipitation associated with macroorganism tissues is enhanced in the presence of mat- and biofilm-forming microorganisms. These results indicate that the occurrence of microbial mats and biofilms may have strongly shaped the preservational window for Ediacara-style fossils associated with early diagenetic silica cements, and therefore influenced the distribution and palaeoecological interpretation of the Ediacara Biota fossil record.