Cargando…
Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury
Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain injury (TBI). Accurate detection of CMBs is necessary for both research and clinical...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127224/ https://www.ncbi.nlm.nih.gov/pubmed/35597029 http://dx.doi.org/10.1016/j.nicl.2022.103027 |
_version_ | 1784712303881486336 |
---|---|
author | Koschmieder, K. Paul, M.M. van den Heuvel, T.L.A. van der Eerden, A.W. van Ginneken, B. Manniesing, R. |
author_facet | Koschmieder, K. Paul, M.M. van den Heuvel, T.L.A. van der Eerden, A.W. van Ginneken, B. Manniesing, R. |
author_sort | Koschmieder, K. |
collection | PubMed |
description | Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain injury (TBI). Accurate detection of CMBs is necessary for both research and clinical applications. CMBs appear as small hypointense lesions on susceptibility-weighted magnetic resonance imaging (SWI). Their size and shape vary markedly in cases of TBI. Manual annotation of CMBs is a difficult, error-prone, and time-consuming task. Several studies addressed the detection of CMBs in other neuropathologies with convolutional neural networks (CNNs). In this study, we developed and contrasted a classification (Patch-CNN) and two segmentation (Segmentation-CNN, U-Net) approaches for the detection of CMBs in TBI cases. The models were trained using 45 datasets, and the best models were chosen according to 16 validation sets. Finally, the models were evaluated on 10 TBI and healthy control cases, respectively. Our three models outperform the current status quo in the detection of traumatic CMBs, achieving higher sensitivity at low false positive (FP) counts. Furthermore, using a segmentation approach allows for better precision. The best model, the U-Net, achieves a detection rate of [Formula: see text] at FP counts of [Formula: see text] in TBI patients and [Formula: see text] in healthy controls. |
format | Online Article Text |
id | pubmed-9127224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91272242022-05-25 Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury Koschmieder, K. Paul, M.M. van den Heuvel, T.L.A. van der Eerden, A.W. van Ginneken, B. Manniesing, R. Neuroimage Clin Regular Article Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain injury (TBI). Accurate detection of CMBs is necessary for both research and clinical applications. CMBs appear as small hypointense lesions on susceptibility-weighted magnetic resonance imaging (SWI). Their size and shape vary markedly in cases of TBI. Manual annotation of CMBs is a difficult, error-prone, and time-consuming task. Several studies addressed the detection of CMBs in other neuropathologies with convolutional neural networks (CNNs). In this study, we developed and contrasted a classification (Patch-CNN) and two segmentation (Segmentation-CNN, U-Net) approaches for the detection of CMBs in TBI cases. The models were trained using 45 datasets, and the best models were chosen according to 16 validation sets. Finally, the models were evaluated on 10 TBI and healthy control cases, respectively. Our three models outperform the current status quo in the detection of traumatic CMBs, achieving higher sensitivity at low false positive (FP) counts. Furthermore, using a segmentation approach allows for better precision. The best model, the U-Net, achieves a detection rate of [Formula: see text] at FP counts of [Formula: see text] in TBI patients and [Formula: see text] in healthy controls. Elsevier 2022-04-28 /pmc/articles/PMC9127224/ /pubmed/35597029 http://dx.doi.org/10.1016/j.nicl.2022.103027 Text en © 2022 Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Koschmieder, K. Paul, M.M. van den Heuvel, T.L.A. van der Eerden, A.W. van Ginneken, B. Manniesing, R. Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title | Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title_full | Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title_fullStr | Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title_full_unstemmed | Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title_short | Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
title_sort | automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127224/ https://www.ncbi.nlm.nih.gov/pubmed/35597029 http://dx.doi.org/10.1016/j.nicl.2022.103027 |
work_keys_str_mv | AT koschmiederk automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury AT paulmm automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury AT vandenheuveltla automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury AT vandereerdenaw automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury AT vanginnekenb automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury AT manniesingr automateddetectionofcerebralmicrobleedsviasegmentationinsusceptibilityweightedimagesofpatientswithtraumaticbraininjury |