Cargando…
Identifying Methylation Signatures and Rules for COVID-19 With Machine Learning Methods
The occurrence of coronavirus disease 2019 (COVID-19) has become a serious challenge to global public health. Definitive and effective treatments for COVID-19 are still lacking, and targeted antiviral drugs are not available. In addition, viruses can regulate host innate immunity and antiviral proce...
Autores principales: | Li, Zhandong, Mei, Zi, Ding, Shijian, Chen, Lei, Li, Hao, Feng, Kaiyan, Huang, Tao, Cai, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127386/ https://www.ncbi.nlm.nih.gov/pubmed/35620480 http://dx.doi.org/10.3389/fmolb.2022.908080 |
Ejemplares similares
-
Identifying Robust Microbiota Signatures and Interpretable Rules to Distinguish Cancer Subtypes
por: Chen, Lei, et al.
Publicado: (2020) -
Identification of COVID-19-Specific Immune Markers Using a Machine Learning Method
por: Li, Hao, et al.
Publicado: (2022) -
Detecting Blood Methylation Signatures in Response to Childhood Cancer Radiotherapy via Machine Learning Methods
por: Li, Zhandong, et al.
Publicado: (2022) -
Identifying Key MicroRNA Signatures for Neurodegenerative Diseases With Machine Learning Methods
por: Li, ZhanDong, et al.
Publicado: (2022) -
Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods
por: Liu, Zhiyang, et al.
Publicado: (2022)