Cargando…
Building an Affordances Map With Interactive Perception
Robots need to understand their environment to perform their task. If it is possible to pre-program a visual scene analysis process in closed environments, robots operating in an open environment would benefit from the ability to learn it through their interaction with their environment. This abilit...
Autores principales: | Le Goff, Léni K., Yaakoubi, Oussama, Coninx, Alexandre, Doncieux, Stéphane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127723/ https://www.ncbi.nlm.nih.gov/pubmed/35619968 http://dx.doi.org/10.3389/fnbot.2022.504459 |
Ejemplares similares
-
Open-Ended Learning: A Conceptual Framework Based on Representational Redescription
por: Doncieux, Stephane, et al.
Publicado: (2018) -
Action Generation Adapted to Low-Level and High-Level Robot-Object Interaction States
por: Maestre, Carlos, et al.
Publicado: (2019) -
Exploratory State Representation Learning
por: Merckling, Astrid, et al.
Publicado: (2022) -
Geometric Affordance Perception: Leveraging Deep 3D Saliency With the Interaction Tensor
por: Ruiz, Eduardo, et al.
Publicado: (2020) -
NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data
por: Abdoun, Oussama, et al.
Publicado: (2011)