Cargando…
Building Tools for Machine Learning and Artificial Intelligence in Cancer Research: Best Practices and a Case Study with the PathML Toolkit for Computational Pathology
Imaging datasets in cancer research are growing exponentially in both quantity and information density. These massive datasets may enable derivation of insights for cancer research and clinical care, but only if researchers are equipped with the tools to leverage advanced computational analysis appr...
Autores principales: | Rosenthal, Jacob, Carelli, Ryan, Omar, Mohamed, Brundage, David, Halbert, Ella, Nyman, Jackson, Hari, Surya N., Van Allen, Eliezer M., Marchionni, Luigi, Umeton, Renato, Loda, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127877/ https://www.ncbi.nlm.nih.gov/pubmed/34880124 http://dx.doi.org/10.1158/1541-7786.MCR-21-0665 |
Ejemplares similares
-
Deep Reinforcement Learning in Unity: With Unity ML Toolkit
por: Majumder, Abhilash
Publicado: (2020) -
Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine
por: Gu, Qiang, et al.
Publicado: (2021) -
Spatially aware deep learning reveals tumor heterogeneity patterns that encode distinct kidney cancer states
por: Nyman, Jackson, et al.
Publicado: (2023) -
Spatially aware deep learning reveals tumor heterogeneity patterns that encode distinct kidney cancer states
por: Nyman, Jackson, et al.
Publicado: (2023) -
In silico toxicology models and databases as FDA Critical Path Initiative toolkits
por: Valerio, Luis G
Publicado: (2011)