Cargando…
A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China
BACKGROUND: Tuberculosis (TB) is the respiratory infectious disease with the highest incidence in China. We aim to design a series of forecasting models and find the factors that affect the incidence of TB, thereby improving the accuracy of the incidence prediction. RESULTS: In this paper, we develo...
Autores principales: | Yang, Enbin, Zhang, Hao, Guo, Xinsheng, Zang, Zinan, Liu, Zhen, Liu, Yuanning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128107/ https://www.ncbi.nlm.nih.gov/pubmed/35606725 http://dx.doi.org/10.1186/s12879-022-07462-8 |
Ejemplares similares
-
Multivariate Markovian modeling of tuberculosis: forecast for the United States.
por: Debanne, S M, et al.
Publicado: (2000) -
An Epidemic of Hepatitis A — Liaoning Province, 2020
por: Sun, Jing, et al.
Publicado: (2020) -
Landslide Displacement Prediction Based on Multivariate LSTM Model
por: Duan, Gonghao, et al.
Publicado: (2023) -
Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting
por: Fang, Zheng, et al.
Publicado: (2021) -
Forecast analysis of the incidence of tuberculosis in the province of Quebec
por: Klotz, Alexander, et al.
Publicado: (2013)