Cargando…

Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi

BACKGROUND: The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved o...

Descripción completa

Detalles Bibliográficos
Autores principales: Reppke, Manfred J., Gerstner, Rebecca, Windeisen-Holzhauser, Elisabeth, Richter, Klaus, Benz, J. Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128199/
https://www.ncbi.nlm.nih.gov/pubmed/35606847
http://dx.doi.org/10.1186/s40694-022-00141-y
_version_ 1784712514105245696
author Reppke, Manfred J.
Gerstner, Rebecca
Windeisen-Holzhauser, Elisabeth
Richter, Klaus
Benz, J. Philipp
author_facet Reppke, Manfred J.
Gerstner, Rebecca
Windeisen-Holzhauser, Elisabeth
Richter, Klaus
Benz, J. Philipp
author_sort Reppke, Manfred J.
collection PubMed
description BACKGROUND: The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS: The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca(2+), Mg(2+), K(+), as well as a complete replacement of Fe(2+), Mn(2+), Zn(2+) by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS: PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40694-022-00141-y.
format Online
Article
Text
id pubmed-9128199
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-91281992022-05-25 Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi Reppke, Manfred J. Gerstner, Rebecca Windeisen-Holzhauser, Elisabeth Richter, Klaus Benz, J. Philipp Fungal Biol Biotechnol Research BACKGROUND: The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS: The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca(2+), Mg(2+), K(+), as well as a complete replacement of Fe(2+), Mn(2+), Zn(2+) by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS: PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40694-022-00141-y. BioMed Central 2022-05-23 /pmc/articles/PMC9128199/ /pubmed/35606847 http://dx.doi.org/10.1186/s40694-022-00141-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Reppke, Manfred J.
Gerstner, Rebecca
Windeisen-Holzhauser, Elisabeth
Richter, Klaus
Benz, J. Philipp
Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title_full Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title_fullStr Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title_full_unstemmed Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title_short Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
title_sort press water from the mechanical drying of douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128199/
https://www.ncbi.nlm.nih.gov/pubmed/35606847
http://dx.doi.org/10.1186/s40694-022-00141-y
work_keys_str_mv AT reppkemanfredj presswaterfromthemechanicaldryingofdouglasfirwoodchipshasmultiplebeneficialeffectsonlignocellulolyticfungi
AT gerstnerrebecca presswaterfromthemechanicaldryingofdouglasfirwoodchipshasmultiplebeneficialeffectsonlignocellulolyticfungi
AT windeisenholzhauserelisabeth presswaterfromthemechanicaldryingofdouglasfirwoodchipshasmultiplebeneficialeffectsonlignocellulolyticfungi
AT richterklaus presswaterfromthemechanicaldryingofdouglasfirwoodchipshasmultiplebeneficialeffectsonlignocellulolyticfungi
AT benzjphilipp presswaterfromthemechanicaldryingofdouglasfirwoodchipshasmultiplebeneficialeffectsonlignocellulolyticfungi