Cargando…
A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística
OBJECTIVE. To describe the spatial distribution of tuberculosis-diabetes comorbidity and identify the social determinants of the double burden of disease in the period from 2012 to 2018 in Brazil. METHOD. In the present ecological study, municipalities were the unit of analysis. All cases of tubercu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Organización Panamericana de la Salud
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128662/ https://www.ncbi.nlm.nih.gov/pubmed/35620175 http://dx.doi.org/10.26633/RPSP.2022.51 |
_version_ | 1784712599196139520 |
---|---|
author | Soeiro, Vanessa Moreira da Silva Vasconcelos, Vitor Vieira Caldas, Arlene de Jesus Mendes |
author_facet | Soeiro, Vanessa Moreira da Silva Vasconcelos, Vitor Vieira Caldas, Arlene de Jesus Mendes |
author_sort | Soeiro, Vanessa Moreira da Silva |
collection | PubMed |
description | OBJECTIVE. To describe the spatial distribution of tuberculosis-diabetes comorbidity and identify the social determinants of the double burden of disease in the period from 2012 to 2018 in Brazil. METHOD. In the present ecological study, municipalities were the unit of analysis. All cases of tuberculosis reported from 2012 to 2018 to the National Notifiable Disease Information System SINAN were included. Socioeconomic variables covering employment, income, and development, and the primary care coverage indicator were analyzed as determinants. The global Moran’s I statistic was used to verify spatial autocorrelation in the comorbidity rate. The local Moran statistic was used to delimit tuberculosis-diabetes clusters: high/high cluster (municipalities with high rates of tuberculosis-diabetes comorbidity with neighboring municipalities also presenting high comorbidity rates) and low/low cluster (municipalities with tuberculosis-diabetes comorbidity below the mean, surrounded by municipalities with low comorbidity rates). RESULTS. A high proportion of tuberculosis-diabetes was detected in most Brazilian regions. Spatial autocorrelation was observed for tuberculosis-diabetes comorbidity, as well as a high-high comorbidity cluster encompassing 88 municipalities located mostly in the Northeast, Southeast, and South, with mean tuberculosis-diabetes prevalence of 28.04%. The variables “percent population living in households with more than two people per bedroom,” “percent unemployment in the population above 18 years of age” and “per capita income” were associated with the presence of comorbidity. CONCLUSION. The results showed a non-random distribution of tuberculosis-diabetes comorbidity, with high-risk areas and associated explanatory variables. The findings underscore the need to operationalize cooperation between tuberculosis and diabetes programs, with the aim of controlling both the individual diseases and the tuberculosis-diabetes syndemic. |
format | Online Article Text |
id | pubmed-9128662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Organización Panamericana de la Salud |
record_format | MEDLINE/PubMed |
spelling | pubmed-91286622022-05-25 A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística Soeiro, Vanessa Moreira da Silva Vasconcelos, Vitor Vieira Caldas, Arlene de Jesus Mendes Rev Panam Salud Publica Artigo Original OBJECTIVE. To describe the spatial distribution of tuberculosis-diabetes comorbidity and identify the social determinants of the double burden of disease in the period from 2012 to 2018 in Brazil. METHOD. In the present ecological study, municipalities were the unit of analysis. All cases of tuberculosis reported from 2012 to 2018 to the National Notifiable Disease Information System SINAN were included. Socioeconomic variables covering employment, income, and development, and the primary care coverage indicator were analyzed as determinants. The global Moran’s I statistic was used to verify spatial autocorrelation in the comorbidity rate. The local Moran statistic was used to delimit tuberculosis-diabetes clusters: high/high cluster (municipalities with high rates of tuberculosis-diabetes comorbidity with neighboring municipalities also presenting high comorbidity rates) and low/low cluster (municipalities with tuberculosis-diabetes comorbidity below the mean, surrounded by municipalities with low comorbidity rates). RESULTS. A high proportion of tuberculosis-diabetes was detected in most Brazilian regions. Spatial autocorrelation was observed for tuberculosis-diabetes comorbidity, as well as a high-high comorbidity cluster encompassing 88 municipalities located mostly in the Northeast, Southeast, and South, with mean tuberculosis-diabetes prevalence of 28.04%. The variables “percent population living in households with more than two people per bedroom,” “percent unemployment in the population above 18 years of age” and “per capita income” were associated with the presence of comorbidity. CONCLUSION. The results showed a non-random distribution of tuberculosis-diabetes comorbidity, with high-risk areas and associated explanatory variables. The findings underscore the need to operationalize cooperation between tuberculosis and diabetes programs, with the aim of controlling both the individual diseases and the tuberculosis-diabetes syndemic. Organización Panamericana de la Salud 2022-05-24 /pmc/articles/PMC9128662/ /pubmed/35620175 http://dx.doi.org/10.26633/RPSP.2022.51 Text en https://creativecommons.org/licenses/by-nc-nd/3.0/us/Este é um artigo de acesso aberto distribuído sob os termos da Licença Creative Commons Attribution-NonCommercial-NoDerivs 3.0 IGO, que permite o uso, distribuição e reprodução em qualquer meio, desde que o trabalho original seja devidamente citado. Não são permitidas modificações ou uso comercial dos artigos. Em qualquer reprodução do artigo, não deve haver nenhuma sugestão de que a OPAS ou o artigo avaliem qualquer organização ou produtos específicos. Não é permitido o uso do logotipo da OPAS. Este aviso deve ser preservado juntamente com o URL original do artigo. Crédito do logotipo e texto em acesso aberto: PLoS, sob licença Creative Commons Attribution-Share Alike 3.0 Unported |
spellingShingle | Artigo Original Soeiro, Vanessa Moreira da Silva Vasconcelos, Vitor Vieira Caldas, Arlene de Jesus Mendes A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title | A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title_full | A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title_fullStr | A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title_full_unstemmed | A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title_short | A comorbidade tuberculose-diabetes no Brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
title_sort | comorbidade tuberculose-diabetes no brasil, 2012-2018: análise espacial exploratória e modelagem estatística |
topic | Artigo Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128662/ https://www.ncbi.nlm.nih.gov/pubmed/35620175 http://dx.doi.org/10.26633/RPSP.2022.51 |
work_keys_str_mv | AT soeirovanessamoreiradasilva acomorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica AT vasconcelosvitorvieira acomorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica AT caldasarlenedejesusmendes acomorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica AT soeirovanessamoreiradasilva comorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica AT vasconcelosvitorvieira comorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica AT caldasarlenedejesusmendes comorbidadetuberculosediabetesnobrasil20122018analiseespacialexploratoriaemodelagemestatistica |