Cargando…
Unpaired Cross-Modality Educed Distillation (CMEDL) for Medical Image Segmentation
Accurate and robust segmentation of lung cancers from CT, even those located close to mediastinum, is needed to more accurately plan and deliver radiotherapy and to measure treatment response. Therefore, we developed a new cross-modality educed distillation (CMEDL) approach, using unpaired CT and MR...
Autores principales: | Jiang, Jue, Rimner, Andreas, Deasy, Joseph O., Veeraraghavan, Harini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128665/ https://www.ncbi.nlm.nih.gov/pubmed/34855590 http://dx.doi.org/10.1109/TMI.2021.3132291 |
Ejemplares similares
-
A Framework for Enabling Unpaired Multi-Modal Learning for Deep Cross-Modal Hashing Retrieval
por: Williams-Lekuona, Mikel, et al.
Publicado: (2022) -
Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
por: Elguindi, Sharif, et al.
Publicado: (2019) -
Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis
por: Haq, Rabia, et al.
Publicado: (2020) -
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
por: Noothout, Julia M. H., et al.
Publicado: (2022) -
CRPGAN: Learning image-to-image translation of two unpaired images by cross-attention mechanism and parallelization strategy
por: Feng, Long, et al.
Publicado: (2023)