Cargando…
Molecular analysis of a public cross-neutralizing antibody response to SARS-CoV-2
As SARS-CoV-2 variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key towards next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2–5/IGLV2–14...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128778/ https://www.ncbi.nlm.nih.gov/pubmed/35611339 http://dx.doi.org/10.1101/2022.05.17.492220 |
Sumario: | As SARS-CoV-2 variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key towards next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2–5/IGLV2–14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes all VOCs to date, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2–5/IGLV2–14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino-acid residue 54 of IGHV2–5, which locates at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine. |
---|