Cargando…

The Skin Reservoir Model: A Tool for Evaluating Microdialysis Sampling of Large Biomarkers from Human Skin

Microdialysis is a well-established technique for sampling of small molecules from the human skin, but larger molecules are more difficult to recover. Consequently, sampling feasibility must be evaluated before microdialysis is used in vivo. This report presents a tool for estimating the recovery of...

Descripción completa

Detalles Bibliográficos
Autores principales: BAUMANN, Katrine, FALKENCRONE, Sidsel, KNUDSEN, Niels Peter Hell, WOETMANN, Anders, DABELSTEEN, Sally, SKOV, Per Stahl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Publication of Acta Dermato-Venereologica 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128977/
https://www.ncbi.nlm.nih.gov/pubmed/31626324
http://dx.doi.org/10.2340/00015555-3356
Descripción
Sumario:Microdialysis is a well-established technique for sampling of small molecules from the human skin, but larger molecules are more difficult to recover. Consequently, sampling feasibility must be evaluated before microdialysis is used in vivo. This report presents a tool for estimating the recovery of large biomarkers from human skin by microdialysis, using previously frozen human skin specimens as reservoirs for biomarker reference solutions. Recovery of the following 17 biomarkers was assessed: CCL27/CTACK, CXCL1/GROα, CXCL7/NAP-2, CXCL10/IP-10, EGF, GM-CSF, IFN-γ, IL-1α, IL-6, IL-8, IL-17, IL-22, IL-23, MIF, TNF-α, TSLP and VEGF. The relative skin recoveries of 13/17 biomarkers were successfully determined in the range 4.0–18.4%. Sampling in the skin reservoir model was not associated with probe leakage, as fluid recovery was stable, at between 80% and 110%. Furthermore, the skin reservoir model enabled studies and optimization of different parameters known to affect biomarker recovery, including flow rate and perfusate composition.