Cargando…
Discovery of new drug indications for COVID-19: A drug repurposing approach
MOTIVATION: The outbreak of coronavirus health issues caused by COVID-19(SARS-CoV-2) creates a global threat to public health. Therefore, there is a need for effective remedial measures using existing and approved therapies with proven safety measures has several advantages. Dexamethasone (Pubchem I...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129022/ https://www.ncbi.nlm.nih.gov/pubmed/35609015 http://dx.doi.org/10.1371/journal.pone.0267095 |
Sumario: | MOTIVATION: The outbreak of coronavirus health issues caused by COVID-19(SARS-CoV-2) creates a global threat to public health. Therefore, there is a need for effective remedial measures using existing and approved therapies with proven safety measures has several advantages. Dexamethasone (Pubchem ID: CID0000005743), baricitinib(Pubchem ID: CID44205240), remdesivir (PubchemID: CID121304016) are three generic drugs that have demonstrated in-vitro high antiviral activity against SARS-CoV-2. The present study aims to widen the search and explore the anti-SARS-CoV-2 properties of these potential drugs while looking for new drug indications with optimised benefits via in-silico research. METHOD: Here, we designed a unique drug-similarity model to repurpose existing drugs against SARS-CoV-2, using the anti-Covid properties of dexamethasone, baricitinib, and remdesivir as references. Known chemical-chemical interactions of reference drugs help extract interactive compounds withimprovedanti-SARS-CoV-2 properties. Here, we calculated the likelihood of these drug compounds treating SARS-CoV-2 related symptoms using chemical-protein interactions between the interactive compounds of the reference drugs and SARS-CoV-2 target genes. In particular, we adopted a two-tier clustering approach to generate a drug similarity model for the final selection of potential anti-SARS-CoV-2 drug molecules. Tier-1 clustering was based on t-Distributed Stochastic Neighbor Embedding (t-SNE) and aimed to filter and discard outlier drugs. The tier-2 analysis incorporated two cluster analyses performed in parallel using Ordering Points To Identify the Clustering Structure (OPTICS) and Hierarchical Agglomerative Clustering (HAC). As a result, itidentified clusters of drugs with similar actions. In addition, we carried out a docking study for in-silico validation of top candidate drugs. RESULT: Our drug similarity model highlighted ten drugs, including reference drugs that can act as potential therapeutics against SARS-CoV-2. The docking results suggested that doxorubicin showed the least binding energy compared to reference drugs. Their practical utility as anti-SARS-CoV-2 drugs, either individually or in combination, warrants further investigation. |
---|