Cargando…
Development and validation of predictive models for COVID-19 outcomes in a safety-net hospital population
OBJECTIVE: To develop predictive models of coronavirus disease 2019 (COVID-19) outcomes, elucidate the influence of socioeconomic factors, and assess algorithmic racial fairness using a racially diverse patient population with high social needs. MATERIALS AND METHODS: Data included 7,102 patients wi...
Autores principales: | Hao, Boran, Hu, Yang, Sotudian, Shahabeddin, Zad, Zahra, Adams, William G, Assoumou, Sabrina A, Hsu, Heather, Mishuris, Rebecca G, Paschalidis, Ioannis C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129120/ https://www.ncbi.nlm.nih.gov/pubmed/35441692 http://dx.doi.org/10.1093/jamia/ocac062 |
Ejemplares similares
-
Distributionally robust learning-to-rank under the Wasserstein metric
por: Sotudian, Shahabeddin, et al.
Publicado: (2023) -
Early prediction of level-of-care requirements in patients with COVID-19
por: Hao, Boran, et al.
Publicado: (2020) -
Improved cluster ranking in protein–protein docking using a regression approach
por: Sotudian, Shahabeddin, et al.
Publicado: (2021) -
Social determinants of health and the prediction of missed breast imaging appointments
por: Sotudian, Shahabeddin, et al.
Publicado: (2022) -
Applying a socioecological framework to chronic disease management:
implications for social informatics interventions in safety-net healthcare
settings
por: Nguyen, Kim Hanh, et al.
Publicado: (2022)