Cargando…
Evaluation of a machine learning approach utilizing wearable data for prediction of SARS-CoV-2 infection in healthcare workers
OBJECTIVE: To determine whether a machine learning model can detect SARS-CoV-2 infection from physiological metrics collected from wearable devices. MATERIALS AND METHODS: Health care workers from 7 hospitals were enrolled and prospectively followed in a multicenter observational study. Subjects dow...
Autores principales: | Hirten, Robert P, Tomalin, Lewis, Danieletto, Matteo, Golden, Eddye, Zweig, Micol, Kaur, Sparshdeep, Helmus, Drew, Biello, Anthony, Pyzik, Renata, Bottinger, Erwin P, Keefer, Laurie, Charney, Dennis, Nadkarni, Girish N, Suarez-Farinas, Mayte, Fayad, Zahi A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129173/ https://www.ncbi.nlm.nih.gov/pubmed/35677186 http://dx.doi.org/10.1093/jamiaopen/ooac041 |
Ejemplares similares
-
A machine learning approach to determine resilience utilizing wearable device data: analysis of an observational cohort
por: Hirten, Robert P, et al.
Publicado: (2023) -
Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study
por: Hirten, Robert P, et al.
Publicado: (2021) -
Factors Associated With Longitudinal Psychological and Physiological Stress in Health Care Workers During the COVID-19 Pandemic: Observational Study Using Apple Watch Data
por: Hirten, Robert P, et al.
Publicado: (2021) -
Development of the ehive Digital Health App: Protocol for a Centralized Research Platform
por: Hirten, Robert P, et al.
Publicado: (2023) -
A Resilience-Building App to Support the Mental Health of Health Care Workers in the COVID-19 Era: Design Process, Distribution, and Evaluation
por: Golden, Eddye A, et al.
Publicado: (2021)