Cargando…
Generalizable prediction of COVID-19 mortality on worldwide patient data
OBJECTIVE: Predicting Coronavirus disease 2019 (COVID-19) mortality for patients is critical for early-stage care and intervention. Existing studies mainly built models on datasets with limited geographical range or size. In this study, we developed COVID-19 mortality prediction models on worldwide,...
Autores principales: | Edelson, Maxim, Kuo, Tsung-Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129227/ https://www.ncbi.nlm.nih.gov/pubmed/35663116 http://dx.doi.org/10.1093/jamiaopen/ooac036 |
Ejemplares similares
-
Correction to: Generalizable prediction of COVID-19 mortality on worldwide patient data
Publicado: (2022) -
Blockchain-enabled immutable, distributed, and highly available clinical research activity logging system for federated COVID-19 data analysis from multiple institutions
por: Kuo, Tsung-Ting, et al.
Publicado: (2023) -
Predicting COVID-19 county-level case number trend by combining demographic characteristics and social distancing policies
por: Li, Megan Mun, et al.
Publicado: (2022) -
The anatomy of a distributed predictive modeling framework: online learning, blockchain network, and consensus algorithm
por: Kuo, Tsung-Ting
Publicado: (2020) -
Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry
por: Shalhout, Sophia Z, et al.
Publicado: (2022)