Cargando…
A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning
Multiple sclerosis (MS), a disease of the central nervous system, affects the white matter of the brain. Neurologists interpret magnetic resonance images that are often complicated, time-consuming, and contradictory. Using EEG signals, this disease can be analyzed and diagnosed more accurately. Howe...
Autores principales: | Mohseni, Elnaz, Moghaddasi, Seyed Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129937/ https://www.ncbi.nlm.nih.gov/pubmed/35619773 http://dx.doi.org/10.1155/2022/5430528 |
Ejemplares similares
-
Hybrid metaheuristics: powerful tools for optimization
por: Blum, Christian, et al.
Publicado: (2016) -
Hybrid Metaheuristics
por: Talbi, El-Ghazali
Publicado: (2013) -
Metaheuristics with Deep Learning-Enabled Parkinson's Disease Diagnosis and Classification Model
por: Bahaddad, Adel A., et al.
Publicado: (2022) -
Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm
por: Jain, Vipin, et al.
Publicado: (2022) -
ECG Heartbeat Classification Using Machine Learning and Metaheuristic Optimization for Smart Healthcare Systems
por: Hassaballah, Mahmoud, et al.
Publicado: (2023)